Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ Phi() [6/7]

var stan::math::Phi ( const var a)
inline

The unit normal cumulative density function for variables (stan).

See Phi() for the double-based version.

The derivative is the unit normal density function,

\(\frac{d}{dx} \Phi(x) = \mbox{\sf Norm}(x|0, 1) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2} x^2)\).

\[ \mbox{Phi}(x) = \begin{cases} 0 & \mbox{if } x < -37.5 \\ \Phi(x) & \mbox{if } -37.5 \leq x \leq 8.25 \\ 1 & \mbox{if } x > 8.25 \\[6pt] \textrm{error} & \mbox{if } x = \textrm{NaN} \end{cases} \]

\[ \frac{\partial\, \mbox{Phi}(x)}{\partial x} = \begin{cases} 0 & \mbox{if } x < -27.5 \\ \frac{\partial\, \Phi(x)}{\partial x} & \mbox{if } -27.5 \leq x \leq 27.5 \\ 0 & \mbox{if } x > 27.5 \\[6pt] \textrm{error} & \mbox{if } x = \textrm{NaN} \end{cases} \]

\[ \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-t^2/2} dt \]

\[ \frac{\partial \, \Phi(x)}{\partial x} = \frac{e^{-x^2/2}}{\sqrt{2\pi}} \]

Parameters
aVariable argument.
Returns
The unit normal cdf evaluated at the specified argument.

Definition at line 53 of file Phi.hpp.