Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ svd() [2/2]

template<typename EigMat , require_rev_matrix_t< EigMat > * = nullptr>
auto stan::math::svd ( const EigMat &  m)
inline

Given input matrix m, return the singular value decomposition (U,D,V) such that m = U*diag(D)*V^{T}

Adjoint update equation comes from Equation (4) in Differentiable Programming Tensor Networks(H. Liao, J. Liu, et al., arXiv:1903.09650).

Template Parameters
EigMattype of input matrix
Parameters
mMxN input matrix
Returns
a tuple (U,D,V) where U is an orthogonal matrix, D a vector of singular values (in decreasing order), and V an orthogonal matrix

Definition at line 27 of file svd.hpp.