template<typename T_x1 , typename T_x2 , typename T_sigma , typename T_l >
Eigen::Matrix< return_type_t< T_x1, T_x2, T_sigma, T_l >, Eigen::Dynamic, Eigen::Dynamic > stan::math::gp_exp_quad_cov |
( |
const std::vector< T_x1 > & |
x1, |
|
|
const std::vector< T_x2 > & |
x2, |
|
|
const T_sigma & |
sigma, |
|
|
const T_l & |
length_scale |
|
) |
| |
|
inline |
Returns a squared exponential kernel.
This function is for the cross covariance matrix needed to compute posterior predictive density.
- Template Parameters
-
T_x1 | type of first std::vector of scalars |
T_x2 | type of second std::vector of scalars This function assumes each element of x1 and x2 are the same size. |
T_sigma | type of sigma |
T_l | type of of length scale |
- Parameters
-
x1 | std::vector of elements that can be used in square distance |
x2 | std::vector of elements that can be used in square distance |
sigma | standard deviation |
length_scale | length scale |
- Returns
- squared distance
- Exceptions
-
std::domain_error | if sigma <= 0, l <= 0, or x is nan or infinite |
Definition at line 209 of file gp_exp_quad_cov.hpp.