Stan Math Library
4.9.0
Automatic Differentiation
|
|
inline |
\[ \mbox{bessel\_first\_kind}(v, x) = \begin{cases} J_v(x) & \mbox{if } -\infty\leq x \leq \infty \\[6pt] \textrm{error} & \mbox{if } x = \textrm{NaN} \end{cases} \]
\[ \frac{\partial\, \mbox{bessel\_first\_kind}(v, x)}{\partial x} = \begin{cases} \frac{\partial\, J_v(x)}{\partial x} & \mbox{if } -\infty\leq x\leq \infty \\[6pt] \textrm{error} & \mbox{if } x = \textrm{NaN} \end{cases} \]
\[ J_v(x)=\left(\frac{1}{2}x\right)^v \sum_{k=0}^\infty \frac{\left(-\frac{1}{4}x^2\right)^k}{k!\, \Gamma(v+k+1)} \]
\[ \frac{\partial \, J_v(x)}{\partial x} = \frac{v}{x}J_v(x)-J_{v+1}(x) \]
Definition at line 39 of file bessel_first_kind.hpp.