Stan Math Library
4.9.0
Automatic Differentiation
|
|
inline |
Returns the natural logarithm of the difference of the inverse logits of the specified arguments.
\[ \mathrm{log\_inv\_logit\_diff}(x,y) = \ln\left(\frac{1}{1+\exp(-x)}-\frac{1}{1+\exp(-y)}\right) \]
\[ \frac{\partial }{\partial x} = -\frac{e^x}{e^y-e^x}-\frac{e^x}{e^x+1} \]
\[ \frac{\partial }{\partial x} = -\frac{e^y}{e^x-e^y}-\frac{e^y}{e^y+1} \]
T1 | type of x argument |
T2 | type of y argument |
x | first argument |
y | second argument |
Definition at line 37 of file log_inv_logit_diff.hpp.