Stan Math Library
5.0.0
Automatic Differentiation
|
|
inline |
Returns fvar with the natural logarithm of the difference of the inverse logits of the specified arguments and its gradients.
\[ \mathrm{log\_inv\_logit\_diff}(x,y) = \ln\left(\frac{1}{1+\exp(-x)}-\frac{1}{1+\exp(-y)}\right) \]
\[ \frac{\partial }{\partial x} = -\frac{e^x}{e^y-e^x}-\frac{e^x}{e^x+1} \]
\[ \frac{\partial }{\partial x} = -\frac{e^y}{e^x-e^y}-\frac{e^y}{e^y+1} \]
T | inner type of the fvar |
x | Argument. |
y | Argument. |
Definition at line 38 of file log_inv_logit_diff.hpp.