Stan Math Library
4.9.0
Automatic Differentiation
|
|
inline |
Calculates the natural logarithm of one minus the exponential of the specified value without overflow,.
log1m_exp(x) = log(1-exp(x))
This function is only defined for x < 0
\[ \mbox{log1m\_exp}(x) = \begin{cases} \ln(1-\exp(x)) & \mbox{if } x < 0 \\ \textrm{NaN} & \mbox{if } x \geq 0\\[6pt] \textrm{NaN} & \mbox{if } x = \textrm{NaN} \end{cases} \]
\[ \frac{\partial\, \mbox{asinh}(x)}{\partial x} = \begin{cases} -\frac{\exp(x)}{1-\exp(x)} & \mbox{if } x < 0 \\ \textrm{NaN} & \mbox{if } x \geq 0\\[6pt] \textrm{NaN} & \mbox{if } x = \textrm{NaN} \end{cases} \]
[in] | a | Argument. |
Definition at line 47 of file log1m_exp.hpp.