Stan Math Library
4.9.0
Automatic Differentiation
|
|
inline |
Calculate the value of the first argument times log of the second argument while behaving properly with 0 inputs.
\( a * \log b \).
\[ \mbox{multiply\_log}(x, y) = \begin{cases} 0 & \mbox{if } x=y=0\\ x\ln y & \mbox{if } x, y\neq 0 \\[6pt] \end{cases} \]
\[ \frac{\partial\, \mbox{multiply\_log}(x, y)}{\partial x} = \begin{cases} \ln y \\[6pt] \end{cases} \]
\[ \frac{\partial\, \mbox{multiply\_log}(x, y)}{\partial y} = \begin{cases} \frac{x}{y} \\[6pt] \end{cases} \]
T_a | type of the first variable |
T_b | type of the second variable |
a | the first variable |
b | the second variable |
Definition at line 49 of file multiply_log.hpp.