Stan Math Library
5.0.0
Automatic Differentiation
|
|
inline |
Returns the Gauss hypergeometric function applied to the input arguments: \(_2F_1(a_1,a_2;b;z)\).
If the input parameters do not meet convergence criteria, then Euler's transformation is applied to resolve this: https://mathworld.wolfram.com/EulerTransform.html
For some special-case combinations of parameters the series is calculated in closed form, see the internal::hyper_2F1_special_cases function for more details.
See 'grad_2F1.hpp' for the derivatives wrt each parameter
Ta1 | Type of scalar first 'a' argument |
Ta2 | Type of scalar second 'a' argument |
Tb | Type of scalar 'b' argument |
Tz | Type of scalar 'z' argument |
[in] | a1 | First of 'a' arguments to function |
[in] | a2 | Second of 'a' arguments to function |
[in] | b | 'b' argument to function |
[in] | z | Scalar z argument |
Definition at line 154 of file hypergeometric_2F1.hpp.