Stan Math Library
4.9.0
Automatic Differentiation
|
|
inline |
The natural logarithm of the difference of the natural exponentiation of x and the natural exponentiation of y.
This function is only defined for x >= y
\[ \mbox{log\_diff\_exp}(x, y) = \begin{cases} \textrm{NaN} & \mbox{if } x < y\\ \ln(\exp(x)-\exp(y)) & \mbox{if } x \geq y \\[6pt] \textrm{NaN} & \mbox{if } x = \textrm{NaN or } y = \textrm{NaN} \end{cases} \]
\[ \frac{\partial\, \mbox{log\_diff\_exp}(x, y)}{\partial x} = \begin{cases} \textrm{NaN} & \mbox{if } x \leq y\\ \frac{\exp(x)}{\exp(x)-\exp(y)} & \mbox{if } x > y \\[6pt] \textrm{NaN} & \mbox{if } x = \textrm{NaN or } y = \textrm{NaN} \end{cases} \]
\[ \frac{\partial\, \mbox{log\_diff\_exp}(x, y)}{\partial y} = \begin{cases} \textrm{NaN} & \mbox{if } x \leq y\\ -\frac{\exp(y)}{\exp(x)-\exp(y)} & \mbox{if } x > y \\[6pt] \textrm{NaN} & \mbox{if } x = \textrm{NaN or } y = \textrm{NaN} \end{cases} \]
T1 | type of the first argument |
T2 | type of the second argument |
x | first argument |
y | second argument |
Definition at line 51 of file log_diff_exp.hpp.