Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ wiener7_cdf_grad_sw()

template<typename T_y , typename T_a , typename T_v , typename T_w , typename T_sw , typename T_err >
auto stan::math::internal::wiener7_cdf_grad_sw ( const T_y &  y,
const T_a &  a,
const T_v &  v,
const T_w &  w,
const T_sw &  sw,
T_err  log_error 
)
inline

Calculate the derivative of the wiener7 density w.r.t.

'sw'

Template Parameters
T_ytype of reaction time
T_atype of boundary separation
T_vtype of drift rate
T_wtype of relative starting point
T_svtype of inter-trial variability in v
T_errtype of log error tolerance
Parameters
yThe reaction time in seconds
aThe boundary separation
vThe drift rate
wThe relative starting point
swThe inter-trial variability of the relative starting point
wildcardThis parameter space is needed for a functor. Could be deleted when another solution is found
log_errorThe log error tolerance
Returns
Gradient with respect to sw

Definition at line 33 of file wiener_full_lcdf_defective.hpp.