Stan Math Library
5.0.0
Automatic Differentiation
▼
Stan Math Library
Overview
▼
Contributor Guides
Developer Guide
Adding New Functions
Adding New Distributions
Common Pitfalls
Using requires for general overloads
Reverse Mode Types
Testing Automatic Differentiation Functions
Testing New Distributions
Add New Functions With Known Gradients
Adding New OpenCL Functions
Windows Development Tips
▼
Internal Docs
►
Probability Distributions
►
OpenCL
►
Compressed Sparse Row matrix format.
►
Type Traits
►
Available requires<> for overloading.
►
Eigen expressions
►
arena_matrix <br>
►
real <br>
►
Parallelism
(External Link) Stan Language Docs
(External Link) Stan Discourse
►
Stan Math Library Docs
►
Class List
•
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Modules
Pages
Loading...
Searching...
No Matches
logical_neq.hpp
Go to the documentation of this file.
1
#ifndef STAN_MATH_PRIM_FUN_LOGICAL_NEQ_HPP
2
#define STAN_MATH_PRIM_FUN_LOGICAL_NEQ_HPP
3
4
#include <
stan/math/prim/meta.hpp
>
5
namespace
stan
{
6
namespace
math {
7
18
template
<
typename
T1,
typename
T2>
19
inline
int
logical_neq
(
const
T1 x1,
const
T2 x2) {
20
return
x1 != x2;
21
}
22
23
}
// namespace math
24
}
// namespace stan
25
#endif
stan::math::logical_neq
int logical_neq(const T1 x1, const T2 x2)
Return 1 if the first argument is unequal to the second.
Definition
logical_neq.hpp:19
stan
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Definition
unit_vector_constrain.hpp:15
meta.hpp
stan
math
prim
fun
logical_neq.hpp
[
Stan Home Page
]
© 2011–2019, Stan Development Team.