1#ifndef STAN_MATH_MIX_PROB_LAPLACE_MARGINAL_POISSON_LOG_LPMF_HPP
2#define STAN_MATH_MIX_PROB_LAPLACE_MARGINAL_POISSON_LOG_LPMF_HPP
31 template <
typename Theta,
typename YVec,
typename Mean,
33 inline auto operator()(
const Theta& theta,
const YVec& y,
34 const std::vector<int>& y_index, Mean&&
mean,
35 std::ostream* )
const {
36 Eigen::VectorXd counts_per_group = Eigen::VectorXd::Zero(theta.size());
37 Eigen::VectorXd n_per_group = Eigen::VectorXd::Zero(theta.size());
39 for (
int i = 0; i < theta.size(); i++) {
40 counts_per_group(y_index[i] - 1) += y[i];
41 n_per_group(y_index[i] - 1) += 1;
71template <
bool propto =
false,
typename ThetaVec,
typename Mean,
72 typename CovarFun,
typename CovarArgs,
75 const std::vector<int>& y,
const std::vector<int>& y_index, Mean&&
mean,
76 CovarFun&& covariance_function, CovarArgs&& covar_args,
77 const ThetaVec& theta_0,
double tolerance,
int max_num_steps,
78 const int hessian_block_size,
const int solver,
79 const int max_steps_line_search, std::ostream* msgs) {
81 max_steps_line_search, tolerance,
85 std::forward_as_tuple(y, y_index, std::forward<Mean>(
mean)),
86 covariance_function, std::forward<CovarArgs>(covar_args), ops, msgs);
105template <
bool propto =
false,
typename CovarFun,
typename CovarArgs,
108 const std::vector<int>& y_index,
110 CovarFun&& covariance_function,
111 CovarArgs&& covar_args,
112 std::ostream* msgs) {
115 std::forward_as_tuple(y, y_index, std::forward<Mean>(
mean)),
116 covariance_function, std::forward<CovarArgs>(covar_args),
require_t< is_eigen_vector< std::decay_t< T > > > require_eigen_vector_t
Require type satisfies is_eigen_vector.
addition_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > add(T_a &&a, T_b &&b)
Reference for calculations of marginal and its gradients: Margossian et al (2020),...
scalar_type_t< T > mean(const T &m)
Returns the sample mean (i.e., average) of the coefficients in the specified std vector,...
T value_of(const fvar< T > &v)
Return the value of the specified variable.
auto laplace_marginal_poisson_log_lpmf(const std::vector< int > &y, const std::vector< int > &y_index, Mean &&mean, CovarFun &&covariance_function, CovarArgs &&covar_args, std::ostream *msgs)
Wrapper function around the laplace_marginal function for a log poisson likelihood.
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
auto laplace_marginal_tol_poisson_log_lpmf(const std::vector< int > &y, const std::vector< int > &y_index, Mean &&mean, CovarFun &&covariance_function, CovarArgs &&covar_args, const ThetaVec &theta_0, double tolerance, int max_num_steps, const int hessian_block_size, const int solver, const int max_steps_line_search, std::ostream *msgs)
Wrapper function around the laplace_marginal function for a log poisson likelihood.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
auto dot_product(const T_a &a, const T_b &b)
Returns the dot product of the specified vectors.
fvar< T > exp(const fvar< T > &x)
double laplace_marginal_density(LLFun &&ll_fun, LLTupleArgs &&ll_args, CovarFun &&covariance_function, CovarArgs &&covar_args, const laplace_options< InitTheta > &options, std::ostream *msgs)
For a latent Gaussian model with global parameters phi, latent variables theta, and observations y,...
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
auto operator()(const Theta &theta, const YVec &y, const std::vector< int > &y_index, Mean &&mean, std::ostream *) const
Returns the lpmf for a Poisson with a log link across multiple groups.