Stan Math Library
5.0.0
Automatic Differentiation
|
|
inline |
Calculates the log of the complement of the cumulative distribution function of the von Mises distribution:
\(VonMisesLCCDF(x, \mu, \kappa) = \log ( 1.0 - \frac{1}{2\pi I_0(\kappa)} \int_{-\pi}^x\) \(e^{\kappa cos(t - \mu)} dt )\)
where
\(x \in [-\pi, \pi]\), \(\mu \in \mathbb{R}\), and \(\kappa \in \mathbb{R}^+\).
x | Variate on the interval \([-pi, pi]\) |
mu | The mean of the distribution |
k | The inverse scale of the distriubtion |
T_x | Type of x |
T_mu | Type of mean parameter |
T_k | Type of inverse scale parameter |
Definition at line 32 of file von_mises_lccdf.hpp.