![]()  | 
  
    Stan Math Library
    5.1.0
    
   Automatic Differentiation 
   | 
   
      
  | 
  inline | 
Calculates the log of the complement of the cumulative distribution function of the von Mises distribution:
\(VonMisesLCCDF(x, \mu, \kappa) = \log ( 1.0 - \frac{1}{2\pi I_0(\kappa)} \int_{-\pi}^x\) \(e^{\kappa cos(t - \mu)} dt )\)
where
\(x \in [-\pi, \pi]\), \(\mu \in \mathbb{R}\), and \(\kappa \in \mathbb{R}^+\).
| x | Variate on the interval \([-pi, pi]\) | 
| mu | The mean of the distribution | 
| k | The inverse scale of the distriubtion | 
| T_x | Type of x | 
| T_mu | Type of mean parameter | 
| T_k | Type of inverse scale parameter | 
Definition at line 32 of file von_mises_lccdf.hpp.