Stan Math Library
5.0.0
Automatic Differentiation
|
return_type_t< T_y, T_dof > stan::math::inv_chi_square_lpdf | ( | const T_y & | y, |
const T_dof & | nu | ||
) |
The log of an inverse chi-squared density for y with the specified degrees of freedom parameter.
The degrees of freedom parameter must be greater than 0. y must be greater than 0.
\begin{eqnarray*} y &\sim& \mbox{\sf{Inv-}}\chi^2_\nu \\ \log (p (y \, |\, \nu)) &=& \log \left( \frac{2^{-\nu / 2}}{\Gamma (\nu / 2)} y^{- (\nu / 2 + 1)} \exp^{-1 / (2y)} \right) \\ &=& - \frac{\nu}{2} \log(2) - \log (\Gamma (\nu / 2)) - (\frac{\nu}{2} + 1) \log(y) - \frac{1}{2y} \\ & & \mathrm{ where } \; y > 0 \end{eqnarray*}
T_y | type of scalar |
T_dof | type of degrees of freedom |
y | A scalar variable. |
nu | Degrees of freedom. |
std::domain_error | if nu is not greater than or equal to 0 |
std::domain_error | if y is not greater than or equal to 0. |
Definition at line 49 of file inv_chi_square_lpdf.hpp.