Stan Math Library
5.0.0
Automatic Differentiation
|
return_type_t< T_y, T_s, T_loc, T_scale > stan::math::normal_sufficient_lpdf | ( | const T_y & | y_bar, |
const T_s & | s_squared, | ||
const T_n & | n_obs, | ||
const T_loc & | mu, | ||
const T_scale & | sigma | ||
) |
The log of the normal density for the specified scalar(s) given the specified mean(s) and deviation(s).
y, s_squared, mu, or sigma can each be either a scalar, a std vector or Eigen vector. n can be either a single int or an std vector of ints. Any vector inputs must be the same length.
The result log probability is defined to be the sum of the log probabilities for each observation/mean/deviation triple.
T_y | type of sample average parameter |
T_s | type of sample squared errors parameter |
T_n | type of sample size parameter |
T_loc | type of location parameter |
T_scale | type of scale parameter |
y_bar | (Sequence of) scalar(s) (sample average(s)). |
s_squared | (Sequence of) sum(s) of sample squared errors |
n_obs | (Sequence of) sample size(s) |
mu | (Sequence of) location parameter(s) for the normal distribution. |
sigma | (Sequence of) scale parameters for the normal distribution. |
std::domain_error | if either n or sigma are not positive, if s_squared is negative or if any parameter is not finite. |
Definition at line 54 of file normal_sufficient_lpdf.hpp.