Automatic Differentiation
 
Loading...
Searching...
No Matches

◆ beta_lpdf() [1/3]

template<bool propto, typename T_y_cl , typename T_scale_succ_cl , typename T_scale_fail_cl , require_all_prim_or_rev_kernel_expression_t< T_y_cl, T_scale_succ_cl, T_scale_fail_cl > * = nullptr, require_any_not_stan_scalar_t< T_y_cl, T_scale_succ_cl, T_scale_fail_cl > * = nullptr>
return_type_t< T_y_cl, T_scale_succ_cl, T_scale_fail_cl > stan::math::beta_lpdf ( const T_y_cl &  y,
const T_scale_succ_cl &  alpha,
const T_scale_fail_cl &  beta 
)

The log of the beta density for the specified scalar(s) given the specified sample stan::math::size(s).

y, alpha, or beta can each either be scalar or a vector on OpenCL device. Any vector inputs must be the same length.

The result log probability is defined to be the sum of the log probabilities for each observation/alpha/beta triple.

Prior sample sizes, alpha and beta, must be greater than 0.

Template Parameters
T_y_cltype of scalar outcome
T_scale_succ_cltype of prior scale for successes
T_scale_fail_cltype of prior scale for failures
Parameters
y(Sequence of) scalar(s).
alpha(Sequence of) prior sample stan::math::size(s).
beta(Sequence of) prior sample stan::math::size(s).
Returns
The log of the product of densities.

Definition at line 43 of file beta_lpdf.hpp.