template<bool propto, typename T_y , typename T_dof , typename T_loc , typename T_covar ,
require_any_not_vector_vt<
is_stan_scalar, T_y, T_dof, T_loc > * = nullptr,
require_all_not_nonscalar_prim_or_rev_kernel_expression_t< T_y, T_loc, T_covar > * = nullptr>
return_type_t< T_y, T_dof, T_loc, T_covar > stan::math::multi_student_t_cholesky_lpdf |
( |
const T_y & |
y, |
|
|
const T_dof & |
nu, |
|
|
const T_loc & |
mu, |
|
|
const T_covar & |
L |
|
) |
| |
|
inline |
The log of the multivariate student t density for the given y, mu, nu, and a Cholesky factor L of the scale matrix.
Sigma = LL', a square, semi-positive definite matrix.
This version of the function is vectorized on y and mu.
- Parameters
-
y | scalar vector of random variates |
nu | scalar degrees of freedom |
mu | location vector |
L | cholesky decomposition of the scale matrix of the multivariate student t distribution. |
- Returns
- The log of the multivariate student t density.
- Exceptions
-
std::domain_error | if LL' is not square, not symmetric, or not semi-positive definite. |
- Template Parameters
-
T_y | Type of scalar. |
T_dof | Type of scalar. |
T_loc | Type of location. |
T_covar | Type of scale. |
- Returns
- log probability of the multivariate student t distribution.
Sigma = LL', a square, semi-positive definite matrix.
This version of the function is vectorized on y and mu.
- Parameters
-
y | A scalar vector. |
nu | A scalar degrees of freedom. |
mu | A location vector. |
L | The Cholesky decomposition of the scale matrix of the multivariate student t distribution. |
- Returns
- The log of the multivariate student t density.
- Exceptions
-
std::domain_error | if LL' is not square, not symmetric, or not semi-positive definite. |
- Template Parameters
-
T_y | Type of scalar. |
T_dof | Type of scalar. |
T_loc | Type of location. |
T_covar | Type of scale. |
- Returns
- log probability of the multivariate student t distribution.
Definition at line 57 of file multi_student_t_cholesky_lpdf.hpp.