Stan Math Library
5.0.0
Automatic Differentiation
|
return_type_t< T_y, T_loc, T_covar > stan::math::multi_normal_cholesky_lpdf | ( | const T_y & | y, |
const T_loc & | mu, | ||
const T_covar & | L | ||
) |
The log of the multivariate normal density for the given y, mu, and a Cholesky factor L of the variance matrix.
Sigma = LL', a square, semi-positive definite matrix.
This version of the function is vectorized on y and mu.
Analytic expressions taken from http://qwone.com/~jason/writing/multivariateNormal.pdf written by Jason D. M. Rennie.
y | A scalar vector |
mu | The mean vector of the multivariate normal distribution. |
L | The Cholesky decomposition of a variance matrix of the multivariate normal distribution |
std::domain_error | if LL' is not square, not symmetric, or not semi-positive definite. |
T_y | Type of scalar. |
T_loc | Type of location. |
T_covar | Type of scale. |
Sigma = LL', a square, semi-positive definite matrix.
Analytic expressions taken from http://qwone.com/~jason/writing/multivariateNormal.pdf written by Jason D. M. Rennie.
y | A scalar vector |
mu | The mean vector of the multivariate normal distribution. |
L | The Cholesky decomposition of a variance matrix of the multivariate normal distribution |
std::domain_error | if LL' is not square, not symmetric, or not semi-positive definite. |
T_y | Type of scalar. |
T_loc | Type of location. |
T_covar | Type of scale. |
Definition at line 48 of file multi_normal_cholesky_lpdf.hpp.