Stan Math Library
4.9.0
Automatic Differentiation
|
return_type_t< T_y, T_dof, T_scale > stan::math::inv_wishart_cholesky_lpdf | ( | const T_y & | L_Y, |
const T_dof & | nu, | ||
const T_scale & | L_S | ||
) |
Return the natural logarithm of the unnormalized inverse wishart density of the specified lower-triangular Cholesky factor variate, positive degrees of freedom, and lower-triangular Cholesky factor of the scale matrix.
The scale matrix, L_S
, must be a lower Cholesky factor. Dimension, k, is implicit. nu must be greater than k-1
The change of variables from Y, a positive-definite matrix, to L_Y, the lower triangular Cholesky factor, is given in Theorem 2.1.9 in Muirhead, R. J. (2005). Aspects of Multivariate Statistical Theory. Wiley-Interscience.
T_y | Cholesky factor matrix |
T_dof | scalar degrees of freedom |
T_scale | Cholesky factor matrix |
L_Y | lower triangular Cholesky factor of a covariance matrix |
nu | scalar degrees of freedom |
L_S | lower triangular Choleskyy factor of the scale matrix |
std::domain_error | if nu is not greater than k-1 |
std::domain_error | if L_S is not a valid Cholesky factor. |
Definition at line 43 of file inv_wishart_cholesky_lpdf.hpp.