![]()  | 
  
    Stan Math Library
    5.1.0
    
   Automatic Differentiation 
   | 
   
      
  | 
  inline | 
Simulate random draw from Gaussian dynamic linear model (GDLM).
This distribution is equivalent to, for \(t = 1:T\),
\begin{eqnarray*} y_t & \sim N(F' \theta_t, V) \\ \theta_t & \sim N(G \theta_{t-1}, W) \\ \theta_0 & \sim N(m_0, C_0) \end{eqnarray*}
| RNG | Type of pseudo-random number generator. | 
| F | A n x r matrix. The design matrix. | 
| G | A n x n matrix. The transition matrix. | 
| V | A r x r matrix. The observation covariance matrix. | 
| W | A n x n matrix. The state covariance matrix. | 
| m0 | A n x 1 matrix. The mean vector of the distribution of the initial state. | 
| C0 | A n x n matrix. The covariance matrix of the distribution of the initial state. | 
| T | a positive integer, how many timesteps to simulate. | 
| rng | Pseudo-random number generator. | 
| std::domain_error | if a matrix is not symmetric or not positive semi-definite. Or throw std::invalid_argument if a size is wrong or any input is NaN or non-finite, or if T is not positive. Require C0 in particular to be strictly positive definite. V and W can be semidefinite. | 
Definition at line 88 of file gaussian_dlm_obs_rng.hpp.