Stan Math Library
5.0.0
Automatic Differentiation
|
|
inline |
Simulate random draw from Gaussian dynamic linear model (GDLM).
This distribution is equivalent to, for \(t = 1:T\),
\begin{eqnarray*} y_t & \sim N(F' \theta_t, V) \\ \theta_t & \sim N(G \theta_{t-1}, W) \\ \theta_0 & \sim N(m_0, C_0) \end{eqnarray*}
RNG | Type of pseudo-random number generator. |
F | A n x r matrix. The design matrix. |
G | A n x n matrix. The transition matrix. |
V | A r x r matrix. The observation covariance matrix. |
W | A n x n matrix. The state covariance matrix. |
m0 | A n x 1 matrix. The mean vector of the distribution of the initial state. |
C0 | A n x n matrix. The covariance matrix of the distribution of the initial state. |
T | a positive integer, how many timesteps to simulate. |
rng | Pseudo-random number generator. |
std::domain_error | if a matrix is not symmetric or not positive semi-definite. Or throw std::invalid_argument if a size is wrong or any input is NaN or non-finite, or if T is not positive. Require C0 in particular to be strictly positive definite. V and W can be semidefinite. |
Definition at line 88 of file gaussian_dlm_obs_rng.hpp.