Automatic Differentiation
 
Loading...
Searching...
No Matches
mdivide_right.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_FWD_FUN_MDIVIDE_RIGHT_HPP
2#define STAN_MATH_FWD_FUN_MDIVIDE_RIGHT_HPP
3
11#include <vector>
12
13namespace stan {
14namespace math {
15
16template <typename EigMat1, typename EigMat2,
17 require_all_eigen_vt<is_fvar, EigMat1, EigMat2>* = nullptr,
18 require_vt_same<EigMat1, EigMat2>* = nullptr>
19inline Eigen::Matrix<value_type_t<EigMat1>, EigMat1::RowsAtCompileTime,
20 EigMat2::ColsAtCompileTime>
21mdivide_right(const EigMat1& A, const EigMat2& b) {
22 using T = typename value_type_t<EigMat1>::Scalar;
23 constexpr int R1 = EigMat1::RowsAtCompileTime;
24 constexpr int C1 = EigMat1::ColsAtCompileTime;
25 constexpr int R2 = EigMat2::RowsAtCompileTime;
26 constexpr int C2 = EigMat2::ColsAtCompileTime;
27
28 check_square("mdivide_right", "b", b);
29 check_multiplicable("mdivide_right", "A", A, "b", b);
30 if (b.size() == 0) {
31 return {A.rows(), 0};
32 }
33
34 Eigen::Matrix<T, R1, C1> val_A(A.rows(), A.cols());
35 Eigen::Matrix<T, R1, C1> deriv_A(A.rows(), A.cols());
36 Eigen::Matrix<T, R2, C2> val_b(b.rows(), b.cols());
37 Eigen::Matrix<T, R2, C2> deriv_b(b.rows(), b.cols());
38
39 const Eigen::Ref<const plain_type_t<EigMat1>>& A_ref = A;
40 for (int j = 0; j < A.cols(); j++) {
41 for (int i = 0; i < A.rows(); i++) {
42 val_A.coeffRef(i, j) = A_ref.coeff(i, j).val_;
43 deriv_A.coeffRef(i, j) = A_ref.coeff(i, j).d_;
44 }
45 }
46
47 const Eigen::Ref<const plain_type_t<EigMat2>>& b_ref = b;
48 for (int j = 0; j < b.cols(); j++) {
49 for (int i = 0; i < b.rows(); i++) {
50 val_b.coeffRef(i, j) = b_ref.coeff(i, j).val_;
51 deriv_b.coeffRef(i, j) = b_ref.coeff(i, j).d_;
52 }
53 }
54
55 Eigen::Matrix<T, R1, C2> A_mult_inv_b = mdivide_right(val_A, val_b);
56
57 return to_fvar(A_mult_inv_b,
58 mdivide_right(deriv_A, val_b)
59 - A_mult_inv_b * mdivide_right(deriv_b, val_b));
60}
61
62template <typename EigMat1, typename EigMat2,
65inline Eigen::Matrix<value_type_t<EigMat1>, EigMat1::RowsAtCompileTime,
66 EigMat2::ColsAtCompileTime>
67mdivide_right(const EigMat1& A, const EigMat2& b) {
68 using T = typename value_type_t<EigMat1>::Scalar;
69 constexpr int R1 = EigMat1::RowsAtCompileTime;
70 constexpr int C1 = EigMat1::ColsAtCompileTime;
71
72 check_square("mdivide_right", "b", b);
73 check_multiplicable("mdivide_right", "A", A, "b", b);
74 if (b.size() == 0) {
75 return {A.rows(), 0};
76 }
77
78 Eigen::Matrix<T, R1, C1> val_A(A.rows(), A.cols());
79 Eigen::Matrix<T, R1, C1> deriv_A(A.rows(), A.cols());
80
81 const Eigen::Ref<const plain_type_t<EigMat1>>& A_ref = A;
82 for (int j = 0; j < A.cols(); j++) {
83 for (int i = 0; i < A.rows(); i++) {
84 val_A.coeffRef(i, j) = A_ref.coeff(i, j).val_;
85 deriv_A.coeffRef(i, j) = A_ref.coeff(i, j).d_;
86 }
87 }
88
89 return to_fvar(mdivide_right(val_A, b), mdivide_right(deriv_A, b));
90}
91
92template <typename EigMat1, typename EigMat2,
93 require_eigen_vt<std::is_arithmetic, EigMat1>* = nullptr,
94 require_eigen_vt<is_fvar, EigMat2>* = nullptr>
95inline Eigen::Matrix<value_type_t<EigMat2>, EigMat1::RowsAtCompileTime,
96 EigMat2::ColsAtCompileTime>
97mdivide_right(const EigMat1& A, const EigMat2& b) {
98 using T = typename value_type_t<EigMat2>::Scalar;
99 constexpr int R1 = EigMat1::RowsAtCompileTime;
100 constexpr int R2 = EigMat2::RowsAtCompileTime;
101 constexpr int C2 = EigMat2::ColsAtCompileTime;
102
103 check_square("mdivide_right", "b", b);
104 check_multiplicable("mdivide_right", "A", A, "b", b);
105 if (b.size() == 0) {
106 return {A.rows(), 0};
107 }
108
109 Eigen::Matrix<T, R2, C2> val_b(b.rows(), b.cols());
110 Eigen::Matrix<T, R2, C2> deriv_b(b.rows(), b.cols());
111
112 const Eigen::Ref<const plain_type_t<EigMat2>>& b_ref = b;
113 for (int j = 0; j < b.cols(); j++) {
114 for (int i = 0; i < b.rows(); i++) {
115 val_b.coeffRef(i, j) = b_ref.coeff(i, j).val_;
116 deriv_b.coeffRef(i, j) = b_ref.coeff(i, j).d_;
117 }
118 }
119
120 Eigen::Matrix<T, R1, C2> A_mult_inv_b = mdivide_right(A, val_b);
121
122 return to_fvar(A_mult_inv_b, -A_mult_inv_b * mdivide_right(deriv_b, val_b));
123}
124
125} // namespace math
126} // namespace stan
127#endif
require_t< container_type_check_base< is_eigen, value_type_t, TypeCheck, Check... > > require_eigen_vt
Require type satisfies is_eigen.
Definition is_eigen.hpp:97
typename value_type< T >::type value_type_t
Helper function for accessing underlying type.
void check_square(const char *function, const char *name, const T_y &y)
Check if the specified matrix is square.
void check_multiplicable(const char *function, const char *name1, const T1 &y1, const char *name2, const T2 &y2)
Check if the matrices can be multiplied.
Eigen::Matrix< value_type_t< EigMat1 >, EigMat1::RowsAtCompileTime, EigMat2::ColsAtCompileTime > mdivide_right(const EigMat1 &A, const EigMat2 &b)
fvar< T > to_fvar(const T &x)
Definition to_fvar.hpp:15
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...