1#ifndef STAN_MATH_PRIM_PROB_CHI_SQUARE_LCCDF_HPP
2#define STAN_MATH_PRIM_PROB_CHI_SQUARE_LCCDF_HPP
37template <
typename T_y,
typename T_dof>
46 static constexpr const char* function =
"chi_square_lccdf";
48 "Degrees of freedom parameter", nu);
59 T_partials_return ccdf_log(0.0);
69 if (y_vec.val(i) == 0) {
70 return ops_partials.build(0.0);
79 if constexpr (is_autodiff_v<T_dof>) {
81 const T_partials_return alpha_dbl = nu_vec.val(i) * 0.5;
82 gamma_vec[i] =
tgamma(alpha_dbl);
83 digamma_vec[i] =
digamma(alpha_dbl);
87 for (
size_t n = 0; n < N; n++) {
90 if (y_vec.val(n) ==
INFTY) {
94 const T_partials_return y_dbl = y_vec.val(n);
95 const T_partials_return alpha_dbl = nu_vec.val(n) * 0.5;
96 const T_partials_return beta_dbl = 0.5;
98 const T_partials_return Pn =
gamma_q(alpha_dbl, beta_dbl * y_dbl);
102 if constexpr (is_autodiff_v<T_y>) {
103 partials<0>(ops_partials)[n] -= beta_dbl *
exp(-beta_dbl * y_dbl)
104 *
pow(beta_dbl * y_dbl, alpha_dbl - 1)
107 if constexpr (is_autodiff_v<T_dof>) {
108 partials<1>(ops_partials)[n]
115 return ops_partials.build(ccdf_log);
VectorBuilder allocates type T1 values to be used as intermediate values.
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
return_type_t< T_y, T_dof > chi_square_lccdf(const T_y &y, const T_dof &nu)
Returns the chi square log complementary cumulative distribution function for the given variate and d...
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
static constexpr double negative_infinity()
Return negative infinity.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
auto pow(const T1 &x1, const T2 &x2)
fvar< T > log(const fvar< T > &x)
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
return_type_t< T1, T2 > grad_reg_inc_gamma(T1 a, T2 z, T1 g, T1 dig, double precision=1e-6, int max_steps=1e5)
Gradient of the regularized incomplete gamma functions igamma(a, z)
void check_not_nan(const char *function, const char *name, const T_y &y)
Check if y is not NaN.
fvar< T > tgamma(const fvar< T > &x)
Return the result of applying the gamma function to the specified argument.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
fvar< T > gamma_q(const fvar< T > &x1, const fvar< T > &x2)
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
static constexpr double INFTY
Positive infinity.
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
fvar< T > exp(const fvar< T > &x)
typename ref_type_if< true, T >::type ref_type_t
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...