Automatic Differentiation
 
Loading...
Searching...
No Matches
beta_binomial_ccdf_log.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_BETA_BINOMIAL_CCDF_LOG_HPP
2#define STAN_MATH_PRIM_PROB_BETA_BINOMIAL_CCDF_LOG_HPP
3
6
7namespace stan {
8namespace math {
9
13template <typename T_n, typename T_N, typename T_size1, typename T_size2>
15 const T_N& N,
16 const T_size1& alpha,
17 const T_size2& beta) {
18 return beta_binomial_lccdf<T_n, T_N, T_size1, T_size2>(n, N, alpha, beta);
19}
20
21} // namespace math
22} // namespace stan
23#endif
return_type_t< T_size1, T_size2 > beta_binomial_ccdf_log(const T_n &n, const T_N &N, const T_size1 &alpha, const T_size2 &beta)
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
Definition beta.hpp:51
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...