This is an old version, view current version.

14.1 Multinomial Distribution

14.1.1 Probability Mass Function

If KN, NN, and θK-simplex, then for yNK such that Kk=1yk=N, \text{Multinomial}(y|\theta) = \binom{N}{y_1,\ldots,y_K} \prod_{k=1}^K \theta_k^{y_k}, where the multinomial coefficient is defined by \binom{N}{y_1,\ldots,y_k} = \frac{N!}{\prod_{k=1}^K y_k!}.

14.1.2 Sampling Statement

y ~ multinomial(theta)

Increment target log probability density with multinomial_lpmf(y | theta) dropping constant additive terms.

14.1.3 Stan Functions

real multinomial_lpmf(int[] y | vector theta)
The log multinomial probability mass function with outcome array y of size K given the K-simplex distribution parameter theta and (implicit) total count N = sum(y)

int[] multinomial_rng(vector theta, int N)
Generate a multinomial variate with simplex distribution parameter theta and total count N; may only be used in transformed data and generated quantities blocks