14.1 Multinomial Distribution
14.1.1 Probability Mass Function
If K∈N, N∈N, and θ∈K-simplex, then for y∈NK such that ∑Kk=1yk=N, \text{Multinomial}(y|\theta) = \binom{N}{y_1,\ldots,y_K} \prod_{k=1}^K \theta_k^{y_k}, where the multinomial coefficient is defined by \binom{N}{y_1,\ldots,y_k} = \frac{N!}{\prod_{k=1}^K y_k!}.
14.1.2 Sampling Statement
y ~
multinomial
(theta)
Increment target log probability density with multinomial_lpmf(y | theta)
dropping constant additive terms.
14.1.3 Stan Functions
real
multinomial_lpmf
(int[] y | vector theta)
The log multinomial probability mass function with outcome array y
of size K given the K-simplex distribution parameter theta and
(implicit) total count N = sum(y)
int[]
multinomial_rng
(vector theta, int N)
Generate a multinomial variate with simplex distribution parameter
theta and total count N; may only be used in transformed data and
generated quantities blocks