This is an old version, view current version.

16.3 Inverse Chi-Square Distribution

16.3.1 Probability Density Function

If νR+, then for yR+, InvChiSquare(y|ν)=2ν/2Γ(ν/2)yν/21exp(121y).

16.3.2 Sampling Statement

y ~ inv_chi_square(nu)

Increment target log probability density with inv_chi_square_lpdf(y | nu) dropping constant additive terms.

16.3.3 Stan Functions

real inv_chi_square_lpdf(reals y | reals nu)
The log of the inverse Chi-square density of y given degrees of freedom nu

real inv_chi_square_cdf(reals y, reals nu)
The inverse Chi-squared cumulative distribution function of y given degrees of freedom nu

real inv_chi_square_lcdf(reals y | reals nu)
The log of the inverse Chi-squared cumulative distribution function of y given degrees of freedom nu

real inv_chi_square_lccdf(reals y | reals nu)
The log of the inverse Chi-squared complementary cumulative distribution function of y given degrees of freedom nu

R inv_chi_square_rng(reals nu)
Generate an inverse Chi-squared variate with degrees of freedom nu; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.