Run CmdStan's stansummary and diagnose utilities. These are documented in the CmdStan Guide:

  • https://mc-stan.org/docs/cmdstan-guide/stansummary.html

  • https://mc-stan.org/docs/cmdstan-guide/diagnose.html

Although these methods can be used for models fit using the $variational() method, much of the output is currently only relevant for models fit using the $sample() method.

See the $summary() for computing similar summaries in R rather than calling CmdStan's utilites.

cmdstan_summary(flags = NULL)

cmdstan_diagnose()

Arguments

flags

An optional character vector of flags (e.g. flags = c("--sig_figs=1")).

Examples

# \dontrun{
fit <- cmdstanr_example("logistic")
fit$cmdstan_diagnose()
#> Processing csv files: /var/folders/s0/zfzm55px2nd2v__zlw5xfj2h0000gn/T/RtmpiACQ3q/logistic-202407021533-1-42dde2.csv, /var/folders/s0/zfzm55px2nd2v__zlw5xfj2h0000gn/T/RtmpiACQ3q/logistic-202407021533-2-42dde2.csv, /var/folders/s0/zfzm55px2nd2v__zlw5xfj2h0000gn/T/RtmpiACQ3q/logistic-202407021533-3-42dde2.csv, /var/folders/s0/zfzm55px2nd2v__zlw5xfj2h0000gn/T/RtmpiACQ3q/logistic-202407021533-4-42dde2.csv
#> 
#> Checking sampler transitions treedepth.
#> Treedepth satisfactory for all transitions.
#> 
#> Checking sampler transitions for divergences.
#> No divergent transitions found.
#> 
#> Checking E-BFMI - sampler transitions HMC potential energy.
#> E-BFMI satisfactory.
#> 
#> Effective sample size satisfactory.
#> 
#> Split R-hat values satisfactory all parameters.
#> 
#> Processing complete, no problems detected.
fit$cmdstan_summary()
#> Inference for Stan model: logistic_model
#> 4 chains: each with iter=(1000,1000,1000,1000); warmup=(0,0,0,0); thin=(1,1,1,1); 4000 iterations saved.
#> 
#> Warmup took (0.043, 0.046, 0.042, 0.041) seconds, 0.17 seconds total
#> Sampling took (0.15, 0.15, 0.16, 0.15) seconds, 0.61 seconds total
#> 
#>                     Mean     MCSE  StdDev     5%       50%       95%  N_Eff  N_Eff/s    R_hat
#> 
#> lp__            -6.6e+01  3.3e-02     1.4    -69  -6.6e+01  -6.4e+01   1837     3007      1.0
#> accept_stat__       0.90    0.011    0.12   0.65      0.94       1.0    123      202  1.0e+00
#> stepsize__          0.77    0.038   0.054   0.73      0.77      0.86    2.0      3.3  1.9e+13
#> treedepth__          2.3     0.10    0.51    2.0       2.0       3.0     26       42  1.1e+00
#> n_leapfrog__         4.9     0.35     2.0    3.0       3.0       7.0     34       55  1.0e+00
#> divergent__         0.00      nan    0.00   0.00      0.00      0.00    nan      nan      nan
#> energy__              68    0.049     2.0     65        68        72   1652     2704  1.0e+00
#> 
#> alpha            3.8e-01  3.5e-03    0.22  0.023   3.8e-01   7.4e-01   3919     6414      1.0
#> beta[1]         -6.7e-01  3.8e-03    0.25   -1.1  -6.7e-01  -2.6e-01   4387     7180      1.0
#> beta[2]         -2.7e-01  3.5e-03    0.23  -0.64  -2.7e-01   1.1e-01   4209     6889     1.00
#> beta[3]          6.8e-01  4.3e-03    0.26   0.25   6.7e-01   1.1e+00   3682     6026     1.00
#> log_lik[1]      -5.1e-01  1.5e-03   0.099  -0.69  -5.1e-01  -3.6e-01   4109     6725      1.0
#> log_lik[2]      -4.0e-01  2.2e-03    0.15  -0.67  -3.8e-01  -2.0e-01   4736     7751      1.0
#> log_lik[3]      -5.0e-01  3.4e-03    0.22  -0.90  -4.6e-01  -2.0e-01   4043     6617      1.0
#> log_lik[4]      -4.5e-01  2.4e-03    0.15  -0.73  -4.3e-01  -2.4e-01   3941     6450      1.0
#> log_lik[5]      -1.2e+00  4.5e-03    0.28   -1.7  -1.2e+00  -7.7e-01   3844     6291     1.00
#> log_lik[6]      -5.9e-01  2.9e-03    0.19  -0.93  -5.7e-01  -3.2e-01   4123     6748     1.00
#> log_lik[7]      -6.4e-01  1.9e-03    0.13  -0.87  -6.3e-01  -4.5e-01   4625     7569      1.0
#> log_lik[8]      -2.8e-01  2.1e-03    0.13  -0.53  -2.5e-01  -1.1e-01   3984     6520     1.00
#> log_lik[9]      -6.9e-01  2.6e-03    0.17  -0.99  -6.8e-01  -4.4e-01   4294     7028      1.0
#> log_lik[10]     -7.4e-01  3.7e-03    0.23   -1.2  -7.1e-01  -4.0e-01   3964     6488      1.0
#> log_lik[11]     -2.8e-01  2.1e-03    0.12  -0.51  -2.6e-01  -1.2e-01   3501     5729     1.00
#> log_lik[12]     -5.0e-01  3.5e-03    0.23  -0.93  -4.6e-01  -1.9e-01   4348     7116      1.0
#> log_lik[13]     -6.6e-01  3.2e-03    0.21   -1.0  -6.3e-01  -3.5e-01   4224     6914     1.00
#> log_lik[14]     -3.6e-01  2.7e-03    0.17  -0.68  -3.3e-01  -1.3e-01   4013     6568      1.0
#> log_lik[15]     -2.8e-01  1.8e-03    0.11  -0.47  -2.6e-01  -1.3e-01   3538     5790     1.00
#> log_lik[16]     -2.8e-01  1.4e-03   0.086  -0.43  -2.7e-01  -1.5e-01   3558     5822     1.00
#> log_lik[17]     -1.6e+00  4.8e-03    0.29   -2.1  -1.6e+00  -1.2e+00   3654     5981      1.0
#> log_lik[18]     -4.8e-01  1.6e-03    0.11  -0.67  -4.7e-01  -3.1e-01   4457     7294     1.00
#> log_lik[19]     -2.3e-01  1.2e-03   0.075  -0.37  -2.3e-01  -1.2e-01   3731     6107     1.00
#> log_lik[20]     -1.1e-01  1.4e-03   0.080  -0.26  -9.3e-02  -2.7e-02   3471     5681      1.0
#> log_lik[21]     -2.1e-01  1.5e-03   0.086  -0.37  -2.0e-01  -9.3e-02   3393     5554     1.00
#> log_lik[22]     -5.7e-01  2.3e-03    0.15  -0.83  -5.6e-01  -3.5e-01   4157     6803     1.00
#> log_lik[23]     -3.3e-01  2.1e-03    0.14  -0.60  -3.1e-01  -1.4e-01   4351     7120     1.00
#> log_lik[24]     -1.4e-01  1.1e-03   0.066  -0.26  -1.2e-01  -5.2e-02   3635     5949     1.00
#> log_lik[25]     -4.6e-01  1.8e-03    0.12  -0.68  -4.5e-01  -2.8e-01   4638     7591      1.0
#> log_lik[26]     -1.5e+00  5.1e-03    0.34   -2.1  -1.5e+00  -1.0e+00   4383     7173     1.00
#> log_lik[27]     -3.1e-01  2.0e-03    0.12  -0.52  -2.9e-01  -1.4e-01   3553     5815     1.00
#> log_lik[28]     -4.4e-01  1.3e-03   0.083  -0.59  -4.4e-01  -3.2e-01   4086     6688      1.0
#> log_lik[29]     -7.3e-01  3.4e-03    0.23   -1.1  -7.0e-01  -3.9e-01   4476     7326     1.00
#> log_lik[30]     -6.9e-01  2.9e-03    0.19   -1.0  -6.8e-01  -4.1e-01   4511     7383      1.0
#> log_lik[31]     -4.9e-01  2.6e-03    0.16  -0.78  -4.7e-01  -2.6e-01   3899     6381     1.00
#> log_lik[32]     -4.2e-01  1.8e-03    0.11  -0.61  -4.1e-01  -2.7e-01   3671     6009     1.00
#> log_lik[33]     -4.1e-01  1.9e-03    0.13  -0.65  -4.0e-01  -2.3e-01   4622     7564      1.0
#> log_lik[34]     -6.4e-02  8.5e-04   0.050  -0.16  -5.0e-02  -1.3e-02   3474     5686     1.00
#> log_lik[35]     -5.9e-01  2.6e-03    0.18  -0.92  -5.7e-01  -3.2e-01   4937     8080     1.00
#> log_lik[36]     -3.2e-01  1.9e-03    0.13  -0.57  -3.1e-01  -1.5e-01   4737     7753     1.00
#> log_lik[37]     -7.0e-01  3.5e-03    0.23   -1.1  -6.7e-01  -3.7e-01   4158     6805      1.0
#> log_lik[38]     -3.1e-01  2.4e-03    0.15  -0.60  -2.9e-01  -1.2e-01   4035     6604     1.00
#> log_lik[39]     -1.8e-01  1.8e-03    0.11  -0.39  -1.5e-01  -5.2e-02   3644     5964      1.0
#> log_lik[40]     -6.8e-01  1.9e-03    0.13  -0.91  -6.7e-01  -4.8e-01   4470     7316      1.0
#> log_lik[41]     -1.1e+00  4.1e-03    0.25   -1.6  -1.1e+00  -7.6e-01   3765     6162     1.00
#> log_lik[42]     -9.3e-01  3.0e-03    0.20   -1.3  -9.1e-01  -6.3e-01   4354     7127      1.0
#> log_lik[43]     -4.1e-01  3.7e-03    0.26  -0.91  -3.5e-01  -1.0e-01   4788     7836     1.00
#> log_lik[44]     -1.2e+00  3.1e-03    0.19   -1.5  -1.2e+00  -8.9e-01   3623     5929      1.0
#> log_lik[45]     -3.6e-01  1.8e-03    0.12  -0.57  -3.4e-01  -1.9e-01   4021     6581      1.0
#> log_lik[46]     -5.8e-01  1.9e-03    0.13  -0.81  -5.7e-01  -3.9e-01   4786     7833      1.0
#> log_lik[47]     -3.1e-01  2.0e-03    0.13  -0.55  -2.9e-01  -1.4e-01   4246     6949      1.0
#> log_lik[48]     -3.2e-01  1.3e-03   0.082  -0.47  -3.2e-01  -2.0e-01   4166     6819     1.00
#> log_lik[49]     -3.2e-01  1.3e-03   0.079  -0.46  -3.1e-01  -2.0e-01   3546     5804     1.00
#> log_lik[50]     -1.3e+00  4.9e-03    0.33   -1.9  -1.3e+00  -8.0e-01   4492     7352     1.00
#> log_lik[51]     -2.9e-01  1.4e-03   0.093  -0.46  -2.8e-01  -1.6e-01   4451     7284     1.00
#> log_lik[52]     -8.4e-01  2.2e-03    0.14   -1.1  -8.3e-01  -6.2e-01   4245     6948      1.0
#> log_lik[53]     -4.0e-01  2.1e-03    0.13  -0.63  -3.9e-01  -2.2e-01   3748     6134     1.00
#> log_lik[54]     -3.7e-01  2.2e-03    0.14  -0.63  -3.5e-01  -1.7e-01   4130     6759      1.0
#> log_lik[55]     -3.9e-01  2.0e-03    0.14  -0.64  -3.7e-01  -2.0e-01   4649     7608      1.0
#> log_lik[56]     -3.2e-01  2.8e-03    0.19  -0.69  -2.8e-01  -9.5e-02   4610     7546     1.00
#> log_lik[57]     -6.6e-01  1.8e-03    0.12  -0.86  -6.5e-01  -4.7e-01   4203     6879      1.0
#> log_lik[58]     -9.5e-01  5.3e-03    0.36   -1.6  -9.0e-01  -4.4e-01   4498     7362     1.00
#> log_lik[59]     -1.4e+00  5.4e-03    0.34   -2.0  -1.3e+00  -8.4e-01   4097     6706      1.0
#> log_lik[60]     -9.8e-01  2.5e-03    0.16   -1.3  -9.7e-01  -7.3e-01   4050     6628      1.0
#> log_lik[61]     -5.4e-01  1.5e-03   0.098  -0.71  -5.3e-01  -3.9e-01   4382     7171      1.0
#> log_lik[62]     -8.8e-01  4.7e-03    0.31   -1.4  -8.4e-01  -4.4e-01   4166     6818     1.00
#> log_lik[63]     -1.2e-01  1.2e-03   0.072  -0.25  -1.0e-01  -3.2e-02   3346     5477     1.00
#> log_lik[64]     -9.0e-01  3.7e-03    0.25   -1.4  -8.8e-01  -5.3e-01   4389     7183     1.00
#> log_lik[65]     -2.0e+00  9.9e-03    0.58   -3.0  -2.0e+00  -1.1e+00   3440     5629     1.00
#> log_lik[66]     -5.1e-01  2.2e-03    0.14  -0.75  -5.0e-01  -3.1e-01   3804     6226     1.00
#> log_lik[67]     -2.8e-01  1.3e-03   0.081  -0.42  -2.7e-01  -1.6e-01   4007     6558     1.00
#> log_lik[68]     -1.1e+00  3.7e-03    0.24   -1.5  -1.0e+00  -7.0e-01   4155     6800     1.00
#> log_lik[69]     -4.3e-01  1.4e-03   0.084  -0.58  -4.3e-01  -3.1e-01   3753     6142     1.00
#> log_lik[70]     -6.4e-01  3.5e-03    0.24   -1.1  -6.1e-01  -3.1e-01   4500     7365     1.00
#> log_lik[71]     -6.1e-01  3.0e-03    0.21  -0.99  -5.8e-01  -3.1e-01   4571     7481     1.00
#> log_lik[72]     -4.6e-01  2.6e-03    0.17  -0.78  -4.4e-01  -2.2e-01   4261     6974     1.00
#> log_lik[73]     -1.5e+00  5.8e-03    0.37   -2.1  -1.5e+00  -9.2e-01   4023     6585      1.0
#> log_lik[74]     -9.5e-01  3.1e-03    0.20   -1.3  -9.4e-01  -6.5e-01   4106     6721     1.00
#> log_lik[75]     -1.1e+00  5.9e-03    0.38   -1.9  -1.1e+00  -5.9e-01   4198     6870     1.00
#> log_lik[76]     -3.7e-01  2.2e-03    0.14  -0.63  -3.5e-01  -1.8e-01   3982     6517      1.0
#> log_lik[77]     -8.8e-01  2.2e-03    0.14   -1.1  -8.7e-01  -6.6e-01   4043     6618      1.0
#> log_lik[78]     -4.8e-01  2.5e-03    0.17  -0.79  -4.6e-01  -2.5e-01   4533     7418     1.00
#> log_lik[79]     -7.6e-01  3.0e-03    0.19   -1.1  -7.5e-01  -4.8e-01   4054     6635      1.0
#> log_lik[80]     -5.4e-01  2.8e-03    0.19  -0.89  -5.2e-01  -2.7e-01   4782     7827      1.0
#> log_lik[81]     -1.6e-01  1.6e-03    0.10  -0.37  -1.4e-01  -4.9e-02   4161     6810      1.0
#> log_lik[82]     -2.2e-01  2.1e-03    0.14  -0.49  -1.9e-01  -6.5e-02   4340     7103      1.0
#> log_lik[83]     -3.4e-01  1.3e-03   0.081  -0.48  -3.4e-01  -2.2e-01   3663     5996      1.0
#> log_lik[84]     -2.7e-01  1.5e-03   0.092  -0.44  -2.6e-01  -1.5e-01   3524     5767     1.00
#> log_lik[85]     -1.3e-01  1.3e-03   0.076  -0.28  -1.1e-01  -4.1e-02   3532     5780      1.0
#> log_lik[86]     -1.1e+00  4.8e-03    0.32   -1.7  -1.1e+00  -6.6e-01   4283     7011      1.0
#> log_lik[87]     -8.2e-01  1.9e-03    0.13   -1.0  -8.2e-01  -6.3e-01   4347     7115      1.0
#> log_lik[88]     -7.8e-01  3.7e-03    0.24   -1.2  -7.5e-01  -4.3e-01   4170     6825     1.00
#> log_lik[89]     -1.3e+00  5.0e-03    0.32   -1.8  -1.2e+00  -7.9e-01   4012     6566      1.0
#> log_lik[90]     -2.6e-01  2.1e-03    0.14  -0.53  -2.4e-01  -9.3e-02   4313     7058     1.00
#> log_lik[91]     -3.9e-01  1.9e-03    0.13  -0.63  -3.7e-01  -2.1e-01   4620     7562      1.0
#> log_lik[92]     -1.5e+00  5.7e-03    0.34   -2.1  -1.5e+00  -9.8e-01   3518     5758     1.00
#> log_lik[93]     -7.4e-01  3.5e-03    0.22   -1.1  -7.2e-01  -4.2e-01   3871     6336     1.00
#> log_lik[94]     -3.2e-01  1.4e-03   0.088  -0.48  -3.1e-01  -1.9e-01   3732     6107      1.0
#> log_lik[95]     -3.9e-01  1.8e-03    0.11  -0.58  -3.8e-01  -2.3e-01   3830     6269     1.00
#> log_lik[96]     -1.6e+00  4.8e-03    0.28   -2.1  -1.6e+00  -1.1e+00   3457     5657      1.0
#> log_lik[97]     -4.3e-01  1.5e-03    0.10  -0.61  -4.2e-01  -2.8e-01   4740     7758     1.00
#> log_lik[98]     -1.0e+00  5.5e-03    0.37   -1.7  -1.0e+00  -5.1e-01   4582     7499     1.00
#> log_lik[99]     -6.9e-01  2.1e-03    0.14  -0.95  -6.8e-01  -4.8e-01   4565     7472      1.0
#> log_lik[100]    -3.9e-01  1.5e-03   0.096  -0.56  -3.8e-01  -2.5e-01   4243     6945      1.0
#> 
#> Samples were drawn using hmc with nuts.
#> For each parameter, N_Eff is a crude measure of effective sample size,
#> and R_hat is the potential scale reduction factor on split chains (at 
#> convergence, R_hat=1).
# }