This is a convenience function for computing \(y - y^{rep}\) (in-sample, for observed \(y\)) or \(y - \tilde{y}\) (out-of-sample, for new or held-out \(y\)). The method for stanreg objects calls posterior_predict internally, whereas the method for objects with class "ppd" accepts the matrix returned by posterior_predict as input and can be used to avoid multiple calls to posterior_predict.

# S3 method for stanreg
predictive_error(
  object,
  newdata = NULL,
  draws = NULL,
  re.form = NULL,
  seed = NULL,
  offset = NULL,
  ...
)

# S3 method for ppd
predictive_error(object, y, ...)

Arguments

object

Either a fitted model object returned by one of the rstanarm modeling functions (a stanreg object) or, for the "ppd" method, a matrix of draws from the posterior predictive distribution returned by posterior_predict.

newdata, draws, seed, offset, re.form

Optional arguments passed to posterior_predict. For binomial models, please see the Note section below if newdata will be specified.

...

Currently ignored.

y

For the "ppd" method only, a vector of \(y\) values the same length as the number of columns in the matrix used as object. The method for stanreg objects takes y directly from the fitted model object.

Value

A draws by nrow(newdata) matrix. If newdata is not specified then it will be draws by nobs(object).

Note

The Note section in posterior_predict about newdata for binomial models also applies for predictive_error, with one important difference. For posterior_predict if the left-hand side of the model formula is cbind(successes, failures) then the particular values of successes and failures in newdata don't matter, only that they add to the desired number of trials. This is not the case for predictive_error. For predictive_error the particular value of successes matters because it is used as \(y\) when computing the error.

See also

posterior_predict to draw from the posterior predictive distribution without computing predictive errors.

Examples

if (!exists("example_model")) example(example_model) err1 <- predictive_error(example_model, draws = 50) hist(err1)
# Using newdata with a binomial model formula(example_model)
#> cbind(incidence, size - incidence) ~ size + period + (1 | herd)
nd <- data.frame( size = c(10, 20), incidence = c(5, 10), period = factor(c(1,2)), herd = c(1, 15) ) err2 <- predictive_error(example_model, newdata = nd, draws = 10, seed = 1234) # stanreg vs ppd methods fit <- stan_glm(mpg ~ wt, data = mtcars, iter = 300)
#> #> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1). #> Chain 1: #> Chain 1: Gradient evaluation took 2.8e-05 seconds #> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.28 seconds. #> Chain 1: Adjust your expectations accordingly! #> Chain 1: #> Chain 1: #> Chain 1: Iteration: 1 / 300 [ 0%] (Warmup) #> Chain 1: Iteration: 30 / 300 [ 10%] (Warmup) #> Chain 1: Iteration: 60 / 300 [ 20%] (Warmup) #> Chain 1: Iteration: 90 / 300 [ 30%] (Warmup) #> Chain 1: Iteration: 120 / 300 [ 40%] (Warmup) #> Chain 1: Iteration: 150 / 300 [ 50%] (Warmup) #> Chain 1: Iteration: 151 / 300 [ 50%] (Sampling) #> Chain 1: Iteration: 180 / 300 [ 60%] (Sampling) #> Chain 1: Iteration: 210 / 300 [ 70%] (Sampling) #> Chain 1: Iteration: 240 / 300 [ 80%] (Sampling) #> Chain 1: Iteration: 270 / 300 [ 90%] (Sampling) #> Chain 1: Iteration: 300 / 300 [100%] (Sampling) #> Chain 1: #> Chain 1: Elapsed Time: 0.01409 seconds (Warm-up) #> Chain 1: 0.006854 seconds (Sampling) #> Chain 1: 0.020944 seconds (Total) #> Chain 1: #> #> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2). #> Chain 2: #> Chain 2: Gradient evaluation took 1.5e-05 seconds #> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.15 seconds. #> Chain 2: Adjust your expectations accordingly! #> Chain 2: #> Chain 2: #> Chain 2: Iteration: 1 / 300 [ 0%] (Warmup) #> Chain 2: Iteration: 30 / 300 [ 10%] (Warmup) #> Chain 2: Iteration: 60 / 300 [ 20%] (Warmup) #> Chain 2: Iteration: 90 / 300 [ 30%] (Warmup) #> Chain 2: Iteration: 120 / 300 [ 40%] (Warmup) #> Chain 2: Iteration: 150 / 300 [ 50%] (Warmup) #> Chain 2: Iteration: 151 / 300 [ 50%] (Sampling) #> Chain 2: Iteration: 180 / 300 [ 60%] (Sampling) #> Chain 2: Iteration: 210 / 300 [ 70%] (Sampling) #> Chain 2: Iteration: 240 / 300 [ 80%] (Sampling) #> Chain 2: Iteration: 270 / 300 [ 90%] (Sampling) #> Chain 2: Iteration: 300 / 300 [100%] (Sampling) #> Chain 2: #> Chain 2: Elapsed Time: 0.013468 seconds (Warm-up) #> Chain 2: 0.006447 seconds (Sampling) #> Chain 2: 0.019915 seconds (Total) #> Chain 2: #> #> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3). #> Chain 3: #> Chain 3: Gradient evaluation took 1.1e-05 seconds #> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds. #> Chain 3: Adjust your expectations accordingly! #> Chain 3: #> Chain 3: #> Chain 3: Iteration: 1 / 300 [ 0%] (Warmup) #> Chain 3: Iteration: 30 / 300 [ 10%] (Warmup) #> Chain 3: Iteration: 60 / 300 [ 20%] (Warmup) #> Chain 3: Iteration: 90 / 300 [ 30%] (Warmup) #> Chain 3: Iteration: 120 / 300 [ 40%] (Warmup) #> Chain 3: Iteration: 150 / 300 [ 50%] (Warmup) #> Chain 3: Iteration: 151 / 300 [ 50%] (Sampling) #> Chain 3: Iteration: 180 / 300 [ 60%] (Sampling) #> Chain 3: Iteration: 210 / 300 [ 70%] (Sampling) #> Chain 3: Iteration: 240 / 300 [ 80%] (Sampling) #> Chain 3: Iteration: 270 / 300 [ 90%] (Sampling) #> Chain 3: Iteration: 300 / 300 [100%] (Sampling) #> Chain 3: #> Chain 3: Elapsed Time: 0.012118 seconds (Warm-up) #> Chain 3: 0.005123 seconds (Sampling) #> Chain 3: 0.017241 seconds (Total) #> Chain 3: #> #> SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4). #> Chain 4: #> Chain 4: Gradient evaluation took 9e-06 seconds #> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds. #> Chain 4: Adjust your expectations accordingly! #> Chain 4: #> Chain 4: #> Chain 4: Iteration: 1 / 300 [ 0%] (Warmup) #> Chain 4: Iteration: 30 / 300 [ 10%] (Warmup) #> Chain 4: Iteration: 60 / 300 [ 20%] (Warmup) #> Chain 4: Iteration: 90 / 300 [ 30%] (Warmup) #> Chain 4: Iteration: 120 / 300 [ 40%] (Warmup) #> Chain 4: Iteration: 150 / 300 [ 50%] (Warmup) #> Chain 4: Iteration: 151 / 300 [ 50%] (Sampling) #> Chain 4: Iteration: 180 / 300 [ 60%] (Sampling) #> Chain 4: Iteration: 210 / 300 [ 70%] (Sampling) #> Chain 4: Iteration: 240 / 300 [ 80%] (Sampling) #> Chain 4: Iteration: 270 / 300 [ 90%] (Sampling) #> Chain 4: Iteration: 300 / 300 [100%] (Sampling) #> Chain 4: #> Chain 4: Elapsed Time: 0.00756 seconds (Warm-up) #> Chain 4: 0.004957 seconds (Sampling) #> Chain 4: 0.012517 seconds (Total) #> Chain 4:
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable. #> Running the chains for more iterations may help. See #> http://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable. #> Running the chains for more iterations may help. See #> http://mc-stan.org/misc/warnings.html#tail-ess
preds <- posterior_predict(fit, seed = 123) all.equal( predictive_error(fit, seed = 123), predictive_error(preds, y = fit$y) )
#> [1] TRUE