`stanreg-objects.Rd`

The rstanarm model-fitting functions return an object of class
`'stanreg'`

, which is a list containing at a minimum the components listed
below. Each `stanreg`

object will also have additional classes (e.g. 'aov',
'betareg', 'glm', 'polr', etc.) and several additional components depending
on the model and estimation algorithm.

Some additional details apply to models estimated using the `stan_mvmer`

or `stan_jm`

modelling functions. The `stan_mvmer`

modelling
function returns an object of class `'stanmvreg'`

, which inherits the
`'stanreg'`

class, but has a number of additional elements described in the
subsection below. The `stan_jm`

modelling function returns an object of class
`'stanjm'`

, which inherits both the `'stanmvreg'`

and `'stanreg'`

classes, but has a number of additional elements described in the subsection below.
Both the `'stanjm'`

and `'stanmvreg'`

classes have several of their own
methods for situations in which the default `'stanreg'`

methods are not
suitable; see the **See Also** section below.

The `stan_biglm`

function is an exception. It returns a
stanfit object rather than a stanreg object.

`stanreg`

objects`coefficients`

Point estimates, as described in

`print.stanreg`

.`ses`

Standard errors based on

`mad`

, as described in`print.stanreg`

.`residuals`

Residuals of type

`'response'`

.`fitted.values`

Fitted mean values. For GLMs the linear predictors are transformed by the inverse link function.

`linear.predictors`

Linear fit on the link scale. For linear models this is the same as

`fitted.values`

.`covmat`

Variance-covariance matrix for the coefficients based on draws from the posterior distribution, the variational approximation, or the asymptotic sampling distribution, depending on the estimation algorithm.

`model,x,y`

If requested, the the model frame, model matrix and response variable used, respectively.

`family`

The

`family`

object used.`call`

The matched call.

`formula`

The model

`formula`

.`data,offset,weights`

The

`data`

,`offset`

, and`weights`

arguments.`algorithm`

The estimation method used.

`prior.info`

A list with information about the prior distributions used.

`stanfit,stan_summary`

The object of

`stanfit-class`

returned by RStan and a matrix of various summary statistics from the stanfit object.`rstan_version`

The version of the rstan package that was used to fit the model.

`stanmvreg`

objects-
The stanmvreg objects contain the majority of the elements described
above for stanreg objects, but in most cases these will be a list with each
elements of the list correponding to one of the submodels (for example,
the family element of a stanmvreg object will be a list with each
element of the list containing the family object for one
submodel). In addition, stanmvreg objects contain the following additional
elements:
`cnms`

The names of the grouping factors and group specific parameters, collapsed across the longitudinal or glmer submodels.

`flevels`

The unique factor levels for each grouping factor, collapsed across the longitudinal or glmer submodels.

`n_markers`

The number of longitudinal or glmer submodels.

`n_yobs`

The number of observations for each longitudinal or glmer submodel.

`n_grps`

The number of levels for each grouping factor (for models estimated using

`stan_jm`

, this will be equal to`n_subjects`

if the individual is the only grouping factor).`runtime`

The time taken to fit the model (in minutes).

`stanjm`

objects-
The stanjm objects contain the elements described above for
stanmvreg objects, but also contain the following additional
elements:
`id_var,time_var`

The names of the variables distinguishing between individuals, and representing time in the longitudinal submodel.

`n_subjects`

The number of individuals.

`n_events`

The number of non-censored events.

`eventtime,status`

The event (or censoring) time and status indicator for each individual.

`basehaz`

A list containing information about the baseline hazard.

`assoc`

An array containing information about the association structure.

`epsilon`

The width of the one-sided difference used to numerically evaluate the slope of the longitudinal trajectory; only relevant if a slope-based association structure was specified (e.g. etaslope, muslope, etc).

`qnodes`

The number of Gauss-Kronrod quadrature nodes used to evaluate the cumulative hazard in the joint likelihood function.