Automatic Differentiation
 
Loading...
Searching...
No Matches
scaled_inv_chi_square_lcdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_SCALED_INV_CHI_SQUARE_LCDF_HPP
2#define STAN_MATH_PRIM_PROB_SCALED_INV_CHI_SQUARE_LCDF_HPP
3
19#include <cmath>
20
21namespace stan {
22namespace math {
23
24template <typename T_y, typename T_dof, typename T_scale>
26 const T_y& y, const T_dof& nu, const T_scale& s) {
27 using T_partials_return = partials_return_t<T_y, T_dof, T_scale>;
28 using std::exp;
29 using std::log;
30 using std::pow;
31 using T_y_ref = ref_type_t<T_y>;
32 using T_nu_ref = ref_type_t<T_dof>;
33 using T_s_ref = ref_type_t<T_scale>;
34 static constexpr const char* function = "scaled_inv_chi_square_lcdf";
35 check_consistent_sizes(function, "Random variable", y,
36 "Degrees of freedom parameter", nu, "Scale parameter",
37 s);
38 T_y_ref y_ref = y;
39 T_nu_ref nu_ref = nu;
40 T_s_ref s_ref = s;
41 check_nonnegative(function, "Random variable", y_ref);
42 check_positive_finite(function, "Degrees of freedom parameter", nu_ref);
43 check_positive_finite(function, "Scale parameter", s_ref);
44
45 if (size_zero(y, nu, s)) {
46 return 0;
47 }
48
49 T_partials_return P(0.0);
50 auto ops_partials = make_partials_propagator(y_ref, nu_ref, s_ref);
51
52 scalar_seq_view<T_y_ref> y_vec(y_ref);
53 scalar_seq_view<T_nu_ref> nu_vec(nu_ref);
54 scalar_seq_view<T_s_ref> s_vec(s_ref);
55 size_t N = max_size(y, nu, s);
56
57 // Explicit return for extreme values
58 // The gradients are technically ill-defined, but treated as zero
59 for (size_t i = 0; i < stan::math::size(y); i++) {
60 if (y_vec.val(i) == 0) {
61 return ops_partials.build(negative_infinity());
62 }
63 }
64
65 VectorBuilder<!is_constant_all<T_dof>::value, T_partials_return, T_dof>
66 gamma_vec(math::size(nu));
67 VectorBuilder<!is_constant_all<T_dof>::value, T_partials_return, T_dof>
68 digamma_vec(math::size(nu));
69
71 for (size_t i = 0; i < stan::math::size(nu); i++) {
72 const T_partials_return half_nu_dbl = 0.5 * nu_vec.val(i);
73 gamma_vec[i] = tgamma(half_nu_dbl);
74 digamma_vec[i] = digamma(half_nu_dbl);
75 }
76 }
77
78 for (size_t n = 0; n < N; n++) {
79 // Explicit results for extreme values
80 // The gradients are technically ill-defined, but treated as zero
81 if (y_vec.val(n) == INFTY) {
82 continue;
83 }
84
85 const T_partials_return y_dbl = y_vec.val(n);
86 const T_partials_return y_inv_dbl = 1.0 / y_dbl;
87 const T_partials_return half_nu_dbl = 0.5 * nu_vec.val(n);
88 const T_partials_return s_dbl = s_vec.val(n);
89 const T_partials_return half_s2_overx_dbl = 0.5 * s_dbl * s_dbl * y_inv_dbl;
90 const T_partials_return half_nu_s2_overx_dbl
91 = 2.0 * half_nu_dbl * half_s2_overx_dbl;
92
93 const T_partials_return Pn = gamma_q(half_nu_dbl, half_nu_s2_overx_dbl);
94 const T_partials_return gamma_p_deriv
95 = exp(-half_nu_s2_overx_dbl)
96 * pow(half_nu_s2_overx_dbl, half_nu_dbl - 1) / tgamma(half_nu_dbl);
97
98 P += log(Pn);
99
101 partials<0>(ops_partials)[n]
102 += half_nu_s2_overx_dbl * y_inv_dbl * gamma_p_deriv / Pn;
103 }
105 partials<1>(ops_partials)[n]
106 += (0.5
107 * grad_reg_inc_gamma(half_nu_dbl, half_nu_s2_overx_dbl,
108 gamma_vec[n], digamma_vec[n])
109 - half_s2_overx_dbl * gamma_p_deriv)
110 / Pn;
111 }
113 partials<2>(ops_partials)[n]
114 += -2.0 * half_nu_dbl * s_dbl * y_inv_dbl * gamma_p_deriv / Pn;
115 }
116 }
117 return ops_partials.build(P);
118}
119
120} // namespace math
121} // namespace stan
122#endif
VectorBuilder allocates type T1 values to be used as intermediate values.
scalar_seq_view provides a uniform sequence-like wrapper around either a scalar or a sequence of scal...
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
int64_t size(const T &m)
Returns the size (number of the elements) of a matrix_cl or var_value<matrix_cl<T>>.
Definition size.hpp:19
static constexpr double negative_infinity()
Return negative infinity.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
return_type_t< T_y, T_dof, T_scale > scaled_inv_chi_square_lcdf(const T_y &y, const T_dof &nu, const T_scale &s)
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
Definition size_zero.hpp:19
auto pow(const T1 &x1, const T2 &x2)
Definition pow.hpp:32
fvar< T > log(const fvar< T > &x)
Definition log.hpp:18
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
return_type_t< T1, T2 > grad_reg_inc_gamma(T1 a, T2 z, T1 g, T1 dig, double precision=1e-6, int max_steps=1e5)
Gradient of the regularized incomplete gamma functions igamma(a, z)
fvar< T > tgamma(const fvar< T > &x)
Return the result of applying the gamma function to the specified argument.
Definition tgamma.hpp:21
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
Definition max_size.hpp:20
fvar< T > gamma_q(const fvar< T > &x1, const fvar< T > &x2)
Definition gamma_q.hpp:19
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
static constexpr double INFTY
Positive infinity.
Definition constants.hpp:46
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
Definition digamma.hpp:23
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:15
typename ref_type_if< true, T >::type ref_type_t
Definition ref_type.hpp:55
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Extends std::true_type when instantiated with zero or more template parameters, all of which extend t...