Automatic Differentiation
 
Loading...
Searching...
No Matches
sinh.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_FUN_SINH_HPP
2#define STAN_MATH_PRIM_FUN_SINH_HPP
3
8#include <cmath>
9#include <complex>
10
11namespace stan {
12namespace math {
13
21template <typename T, require_arithmetic_t<T>* = nullptr>
22inline auto sinh(const T x) {
23 return std::sinh(x);
24}
25
33template <typename T, require_complex_bt<std::is_arithmetic, T>* = nullptr>
34inline auto sinh(const T x) {
35 return std::sinh(x);
36}
37
45struct sinh_fun {
46 template <typename T>
47 static inline auto fun(const T& x) {
48 return sinh(x);
49 }
50};
51
59template <typename Container, require_ad_container_t<Container>* = nullptr>
60inline auto sinh(const Container& x) {
62}
63
72template <typename Container,
74inline auto sinh(const Container& x) {
75 return apply_vector_unary<Container>::apply(
76 x, [](const auto& v) { return v.array().sinh(); });
77}
78
79namespace internal {
87template <typename V>
88inline std::complex<V> complex_sinh(const std::complex<V>& z) {
89 return 0.5 * (exp(z) - exp(-z));
90}
91} // namespace internal
92
93} // namespace math
94} // namespace stan
95
96#endif
require_t< container_type_check_base< is_container, base_type_t, TypeCheck, Check... > > require_container_bt
Require type satisfies is_container.
std::complex< V > complex_sinh(const std::complex< V > &z)
Return the hyperbolic sine of the complex argument.
Definition sinh.hpp:88
fvar< T > sinh(const fvar< T > &x)
Definition sinh.hpp:15
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:15
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
static auto fun(const T &x)
Definition sinh.hpp:47
Structure to wrap sinh() so that it can be vectorized.
Definition sinh.hpp:45