1#ifndef STAN_MATH_PRIM_FUN_SINH_HPP
2#define STAN_MATH_PRIM_FUN_SINH_HPP
21template <
typename T, require_arithmetic_t<T>* =
nullptr>
33template <
typename T, require_complex_bt<std::is_arithmetic, T>* =
nullptr>
34inline auto sinh(T&& x) {
47 static inline auto fun(T&& x) {
48 return sinh(std::forward<T>(x));
59template <
typename Container, require_ad_container_t<Container>* =
nullptr>
60inline auto sinh(Container&& x) {
62 std::forward<Container>(x));
73template <
typename Container,
75inline auto sinh(Container&& x) {
76 return apply_vector_unary<Container>::apply(
77 std::forward<Container>(x), [](
auto&& v) {
return v.array().
sinh(); });
90 return 0.5 * (
exp(z) -
exp(-z));
require_t< container_type_check_base< is_container, base_type_t, TypeCheck, Check... > > require_container_bt
Require type satisfies is_container.
std::complex< V > complex_sinh(const std::complex< V > &z)
Return the hyperbolic sine of the complex argument.
fvar< T > sinh(const fvar< T > &x)
fvar< T > exp(const fvar< T > &x)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
Structure to wrap sinh() so that it can be vectorized.