Automatic Differentiation
 
Loading...
Searching...
No Matches
inv_cloglog.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_FUN_INV_CLOGLOG_HPP
2#define STAN_MATH_PRIM_FUN_INV_CLOGLOG_HPP
3
8#include <cmath>
9
10namespace stan {
11namespace math {
12
48template <typename T, require_arithmetic_t<T>* = nullptr>
49inline auto inv_cloglog(const T x) {
50 return 1. - std::exp(-std::exp(x));
51}
52
66template <typename T, require_complex_t<T>* = nullptr>
67inline auto inv_cloglog(const T& x) {
68 return 1. - exp(-exp(x));
69}
70
79 template <typename T>
80 static inline auto fun(const T& x) {
81 return inv_cloglog(x);
82 }
83};
84
92template <typename Container, require_ad_container_t<Container>* = nullptr>
93inline auto inv_cloglog(const Container& x) {
95}
96
105template <typename Container,
107inline auto inv_cloglog(const Container& x) {
108 return apply_vector_unary<Container>::apply(
109 x, [](const auto& v) { return 1 - (-v.array().exp()).exp(); });
110}
111
112} // namespace math
113} // namespace stan
114
115#endif
require_t< container_type_check_base< is_container, base_type_t, TypeCheck, Check... > > require_container_bt
Require type satisfies is_container.
fvar< T > inv_cloglog(const fvar< T > &x)
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:15
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
static auto fun(const T &x)
Structure to wrap inv_cloglog() so that it can be vectorized.