Automatic Differentiation
 
Loading...
Searching...
No Matches
cosh.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_FUN_COSH_HPP
2#define STAN_MATH_PRIM_FUN_COSH_HPP
3
10#include <cmath>
11
12namespace stan {
13namespace math {
14
22template <typename T, require_arithmetic_t<T>* = nullptr>
23inline auto cosh(const T x) {
24 return std::cosh(x);
25}
26
34template <typename T, require_complex_bt<std::is_arithmetic, T>* = nullptr>
35inline auto cosh(const T x) {
36 return std::cosh(x);
37}
38
46struct cosh_fun {
47 template <typename T>
48 static inline auto fun(const T& x) {
49 return cosh(x);
50 }
51};
52
61template <typename Container, require_ad_container_t<Container>* = nullptr>
62inline auto cosh(const Container& x) {
64}
65
74template <typename Container,
76inline auto cosh(const Container& x) {
77 return apply_vector_unary<Container>::apply(
78 x, [](const auto& v) { return v.array().cosh(); });
79}
80
81namespace internal {
89template <typename V>
90inline std::complex<V> complex_cosh(const std::complex<V>& z) {
91 return 0.5 * (exp(z) + exp(-z));
92}
93} // namespace internal
94
95} // namespace math
96} // namespace stan
97
98#endif
require_t< container_type_check_base< is_container, base_type_t, TypeCheck, Check... > > require_container_bt
Require type satisfies is_container.
std::complex< V > complex_cosh(const std::complex< V > &z)
Return the hyperbolic cosine of the complex argument.
Definition cosh.hpp:90
fvar< T > cosh(const fvar< T > &x)
Definition cosh.hpp:16
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:15
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
static auto fun(const T &x)
Definition cosh.hpp:48
Structure to wrap cosh() so it can be vectorized.
Definition cosh.hpp:46