Automatic Differentiation
 
Loading...
Searching...
No Matches
frechet_lccdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_OPENCL_PRIM_FRECHET_LCCDF_HPP
2#define STAN_MATH_OPENCL_PRIM_FRECHET_LCCDF_HPP
3#ifdef STAN_OPENCL
4
12
13namespace stan {
14namespace math {
15
29template <
30 typename T_y_cl, typename T_shape_cl, typename T_scale_cl,
32 T_scale_cl>* = nullptr,
33 require_any_not_stan_scalar_t<T_y_cl, T_shape_cl, T_scale_cl>* = nullptr>
35 const T_y_cl& y, const T_shape_cl& alpha, const T_scale_cl& sigma) {
36 static constexpr const char* function = "frechet_lccdf(OpenCL)";
38 using std::isfinite;
39 using std::isnan;
40
41 check_consistent_sizes(function, "Random variable", y, "Shape parameter",
42 alpha, "Scale parameter", sigma);
43 const size_t N = max_size(y, alpha, sigma);
44 if (N == 0) {
45 return 1.0;
46 }
47
48 const auto& y_col = as_column_vector_or_scalar(y);
49 const auto& alpha_col = as_column_vector_or_scalar(alpha);
50 const auto& sigma_col = as_column_vector_or_scalar(sigma);
51
52 const auto& y_val = value_of(y_col);
53 const auto& alpha_val = value_of(alpha_col);
54 const auto& sigma_val = value_of(sigma_col);
55
56 auto check_y_positive
57 = check_cl(function, "Random variable", y_val, "positive");
58 auto y_positive = y_val > 0;
59 auto check_alpha_positive_finite
60 = check_cl(function, "Shape parameter", alpha_val, "positive finite");
61 auto alpha_positive_finite_expr = alpha_val > 0 && isfinite(alpha_val);
62 auto check_sigma_positive_finite
63 = check_cl(function, "Scale parameter", sigma_val, "positive finite");
64 auto sigma_positive_finite_expr = 0 < sigma_val && isfinite(sigma_val);
65
66 auto pow_n = pow(elt_divide(sigma_val, y_val), alpha_val);
67 auto exp_n = exp(-pow_n);
68 auto lccdf_expr = colwise_sum(log1m(exp_n));
69
70 auto rep_deriv = elt_divide(pow_n, elt_divide(1.0, exp_n) - 1.0);
71 auto y_deriv = elt_multiply(elt_divide(-alpha_val, y_val), rep_deriv);
72 auto alpha_deriv
73 = elt_multiply(-log(elt_divide(y_val, sigma_val)), rep_deriv);
74 auto sigma_deriv = elt_multiply(elt_divide(alpha_val, sigma_val), rep_deriv);
75
76 matrix_cl<double> lccdf_cl;
77 matrix_cl<double> y_deriv_cl;
78 matrix_cl<double> alpha_deriv_cl;
79 matrix_cl<double> sigma_deriv_cl;
80
81 results(check_y_positive, check_alpha_positive_finite,
82 check_sigma_positive_finite, lccdf_cl, y_deriv_cl, alpha_deriv_cl,
83 sigma_deriv_cl)
84 = expressions(y_positive, alpha_positive_finite_expr,
85 sigma_positive_finite_expr, lccdf_expr,
89
90 T_partials_return lccdf = (from_matrix_cl(lccdf_cl)).sum();
91
92 auto ops_partials = make_partials_propagator(y_col, alpha_col, sigma_col);
93
95 partials<0>(ops_partials) = std::move(y_deriv_cl);
96 }
98 partials<1>(ops_partials) = std::move(alpha_deriv_cl);
99 }
101 partials<2>(ops_partials) = std::move(sigma_deriv_cl);
102 }
103 return ops_partials.build(lccdf);
104}
105
106} // namespace math
107} // namespace stan
108#endif
109#endif
Represents an arithmetic matrix on the OpenCL device.
Definition matrix_cl.hpp:47
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
Definition check_cl.hpp:219
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
Definition calc_if.hpp:121
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
Definition copy.hpp:61
return_type_t< T_y_cl, T_shape_cl, T_scale_cl > frechet_lccdf(const T_y_cl &y, const T_shape_cl &alpha, const T_scale_cl &sigma)
Returns the frechet log complementary cumulative distribution function for the given location,...
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
auto pow(const T1 &x1, const T2 &x2)
Definition pow.hpp:32
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition value_of.hpp:18
fvar< T > log(const fvar< T > &x)
Definition log.hpp:18
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
Definition sum.hpp:23
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
Definition max_size.hpp:20
fvar< T > log1m(const fvar< T > &x)
Definition log1m.hpp:12
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:15
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
Definition std_isnan.hpp:18
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...