Automatic Differentiation
 
Loading...
Searching...
No Matches
double_exponential_lccdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_OPENCL_PRIM_DOUBLE_EXPONENTIAL_LCCDF_HPP
2#define STAN_MATH_OPENCL_PRIM_DOUBLE_EXPONENTIAL_LCCDF_HPP
3#ifdef STAN_OPENCL
4
12
13namespace stan {
14namespace math {
15
29template <
30 typename T_y_cl, typename T_loc_cl, typename T_scale_cl,
32 T_scale_cl>* = nullptr,
33 require_any_not_stan_scalar_t<T_y_cl, T_loc_cl, T_scale_cl>* = nullptr>
35 const T_y_cl& y, const T_loc_cl& mu, const T_scale_cl& sigma) {
36 static constexpr const char* function = "double_exponential_lccdf(OpenCL)";
38 using std::isfinite;
39 using std::isnan;
40
41 check_consistent_sizes(function, "Random variable", y, "Location parameter",
42 mu, "Scale parameter", sigma);
43 const size_t N = max_size(y, mu, sigma);
44 if (N == 0) {
45 return 0.0;
46 }
47
48 const auto& y_col = as_column_vector_or_scalar(y);
49 const auto& mu_col = as_column_vector_or_scalar(mu);
50 const auto& sigma_col = as_column_vector_or_scalar(sigma);
51
52 const auto& y_val = value_of(y_col);
53 const auto& mu_val = value_of(mu_col);
54 const auto& sigma_val = value_of(sigma_col);
55
56 auto check_y_not_nan
57 = check_cl(function, "Random variable", y_val, "not NaN");
58 auto y_not_nan_expr = !isnan(y_val);
59 auto check_mu_finite
60 = check_cl(function, "Location parameter", mu_val, "finite");
61 auto mu_finite_expr = isfinite(mu_val);
62 auto check_sigma_positive_finite
63 = check_cl(function, "Scale parameter", sigma_val, "positive finite");
64 auto sigma_positive_finite_expr = 0 < sigma_val && isfinite(sigma_val);
65
66 auto sigma_inv = elt_divide(1.0, sigma_val);
67 auto scaled_diff = elt_multiply(y_val - mu_val, sigma_inv);
68 auto cond = y_val < mu_val;
69 auto mu_deriv = select(
70 cond, elt_divide(sigma_inv, 2.0 * exp(-scaled_diff) - 1.0), sigma_inv);
71 auto ccdf_log_expr = colwise_sum(
72 select(cond, log1m(0.5 * exp(scaled_diff)), LOG_HALF - scaled_diff));
73 auto y_deriv = -mu_deriv;
74 auto sigma_deriv = elt_multiply(mu_deriv, scaled_diff);
75
76 matrix_cl<double> ccdf_log_cl;
77 matrix_cl<double> mu_deriv_cl;
78 matrix_cl<double> y_deriv_cl;
79 matrix_cl<double> sigma_deriv_cl;
80
81 results(check_y_not_nan, check_mu_finite, check_sigma_positive_finite,
82 ccdf_log_cl, y_deriv_cl, mu_deriv_cl, sigma_deriv_cl)
83 = expressions(y_not_nan_expr, mu_finite_expr, sigma_positive_finite_expr,
84 ccdf_log_expr,
88
89 T_partials_return ccdf_log = (from_matrix_cl(ccdf_log_cl)).sum();
90
91 auto ops_partials = make_partials_propagator(y_col, mu_col, sigma_col);
92
94 partials<0>(ops_partials) = std::move(y_deriv_cl);
95 }
97 partials<1>(ops_partials) = std::move(mu_deriv_cl);
98 }
100 partials<2>(ops_partials) = std::move(sigma_deriv_cl);
101 }
102 return ops_partials.build(ccdf_log);
103}
104
105} // namespace math
106} // namespace stan
107#endif
108#endif
Represents an arithmetic matrix on the OpenCL device.
Definition matrix_cl.hpp:47
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
select_< as_operation_cl_t< T_condition >, as_operation_cl_t< T_then >, as_operation_cl_t< T_else > > select(T_condition &&condition, T_then &&then, T_else &&els)
Selection operation on kernel generator expressions.
Definition select.hpp:148
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
Definition check_cl.hpp:219
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
Definition calc_if.hpp:121
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
return_type_t< T_y_cl, T_loc_cl, T_scale_cl > double_exponential_lccdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma)
Returns the double exponential log complementary cumulative density function.
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
Definition copy.hpp:61
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
static constexpr double LOG_HALF
The natural logarithm of 0.5, .
Definition constants.hpp:92
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition value_of.hpp:18
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
Definition sum.hpp:23
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
Definition max_size.hpp:20
fvar< T > log1m(const fvar< T > &x)
Definition log1m.hpp:12
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:15
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
Definition std_isnan.hpp:18
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...