Stan Math Library
4.9.0
Automatic Differentiation
|
#include <stan/math/rev/meta.hpp>
#include <stan/math/rev/functor/cvodes_integrator.hpp>
#include <stan/math/prim/fun/Eigen.hpp>
#include <stan/math/prim/functor/apply.hpp>
#include <ostream>
#include <vector>
Go to the source code of this file.
Namespaces | |
namespace | stan |
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation from C or the boost::math::lgamma implementation. | |
namespace | stan::math |
Matrices and templated mathematical functions. | |
Functions | |
template<typename F , typename T_y0 , typename T_t0 , typename T_ts , typename... T_Args, require_eigen_col_vector_t< T_y0 > * = nullptr> | |
std::vector< Eigen::Matrix< stan::return_type_t< T_y0, T_t0, T_ts, T_Args... >, Eigen::Dynamic, 1 > > | stan::math::ode_adams_tol_impl (const char *function_name, const F &f, const T_y0 &y0, const T_t0 &t0, const std::vector< T_ts > &ts, double relative_tolerance, double absolute_tolerance, long int max_num_steps, std::ostream *msgs, const T_Args &... args) |
Solve the ODE initial value problem y' = f(t, y), y(t0) = y0 at a set of times, { t1, t2, t3, ... } using the non-stiff Adams-Moulton solver from CVODES. | |
template<typename F , typename T_y0 , typename T_t0 , typename T_ts , typename... T_Args, require_eigen_col_vector_t< T_y0 > * = nullptr> | |
std::vector< Eigen::Matrix< stan::return_type_t< T_y0, T_t0, T_ts, T_Args... >, Eigen::Dynamic, 1 > > | stan::math::ode_adams_tol (const F &f, const T_y0 &y0, const T_t0 &t0, const std::vector< T_ts > &ts, double relative_tolerance, double absolute_tolerance, long int max_num_steps, std::ostream *msgs, const T_Args &... args) |
Solve the ODE initial value problem y' = f(t, y), y(t0) = y0 at a set of times, { t1, t2, t3, ... } using the non-stiff Adams-Moulton solver from CVODES. | |
template<typename F , typename T_y0 , typename T_t0 , typename T_ts , typename... T_Args, require_eigen_col_vector_t< T_y0 > * = nullptr> | |
std::vector< Eigen::Matrix< stan::return_type_t< T_y0, T_t0, T_ts, T_Args... >, Eigen::Dynamic, 1 > > | stan::math::ode_adams (const F &f, const T_y0 &y0, const T_t0 &t0, const std::vector< T_ts > &ts, std::ostream *msgs, const T_Args &... args) |
Solve the ODE initial value problem y' = f(t, y), y(t0) = y0 at a set of times, { t1, t2, t3, ... } using the non-stiff Adams-Moulton solver in CVODES with defaults for relative_tolerance, absolute_tolerance, and max_num_steps. | |