1#ifndef STAN_MATH_FWD_FUN_OWENS_T_HPP
2#define STAN_MATH_FWD_FUN_OWENS_T_HPP
33 + x2.
d_ *
exp(neg_x1_sq_div_2 * one_p_x2_sq)
47 T neg_x1_sq_div_2 = -
square(x1) * 0.5;
51 x2.
d_ *
exp(neg_x1_sq_div_2 * one_p_x2_sq) / (one_p_x2_sq *
TWO_PI));
fvar< T > erf(const fvar< T > &x)
static constexpr double INV_SQRT_TWO
The value of 1 over the square root of 2, .
static constexpr double INV_SQRT_TWO_PI
The value of 1 over the square root of , .
fvar< T > owens_t(const fvar< T > &x1, const fvar< T > &x2)
Return Owen's T function applied to the specified arguments.
static constexpr double TWO_PI
Twice the value of , .
fvar< T > square(const fvar< T > &x)
fvar< T > exp(const fvar< T > &x)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Scalar val_
The value of this variable.
Scalar d_
The tangent (derivative) of this variable.
This template class represents scalars used in forward-mode automatic differentiation,...