Automatic Differentiation
 
Loading...
Searching...
No Matches
Phi.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_FWD_FUN_PHI_HPP
2#define STAN_MATH_FWD_FUN_PHI_HPP
3
10#include <cmath>
11
12namespace stan {
13namespace math {
14
15template <typename T>
16inline fvar<T> Phi(const fvar<T>& x) {
17 T xv = x.val_;
18 return fvar<T>(Phi(xv), x.d_ * exp(xv * xv / -2.0) * INV_SQRT_TWO_PI);
19}
20
21} // namespace math
22} // namespace stan
23#endif
static constexpr double INV_SQRT_TWO_PI
The value of 1 over the square root of , .
fvar< T > Phi(const fvar< T > &x)
Definition Phi.hpp:16
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:15
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Scalar val_
The value of this variable.
Definition fvar.hpp:49
Scalar d_
The tangent (derivative) of this variable.
Definition fvar.hpp:61
This template class represents scalars used in forward-mode automatic differentiation,...
Definition fvar.hpp:40