Automatic Differentiation
 
Loading...
Searching...
No Matches
uniform_ccdf_log.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_UNIFORM_CCDF_LOG_HPP
2#define STAN_MATH_PRIM_PROB_UNIFORM_CCDF_LOG_HPP
3
6
7namespace stan {
8namespace math {
9
13template <typename T_y, typename T_low, typename T_high>
15 const T_low& alpha,
16 const T_high& beta) {
17 return uniform_lccdf<T_y, T_low, T_high>(y, alpha, beta);
18}
19
20} // namespace math
21} // namespace stan
22#endif
return_type_t< T_y, T_low, T_high > uniform_ccdf_log(const T_y &y, const T_low &alpha, const T_high &beta)
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
fvar< T > beta(const fvar< T > &x1, const fvar< T > &x2)
Return fvar with the beta function applied to the specified arguments and its gradient.
Definition beta.hpp:51
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...