1#ifndef STAN_MATH_REV_FUN_TRACE_GEN_INV_QUAD_FORM_LDLT_HPP
2#define STAN_MATH_REV_FUN_TRACE_GEN_INV_QUAD_FORM_LDLT_HPP
30template <
typename Td,
typename Ta,
typename Tb,
31 require_not_col_vector_t<Td>* =
nullptr,
32 require_all_matrix_t<Td, Ta, Tb>* =
nullptr,
33 require_any_st_var<Td, Ta, Tb>* =
nullptr>
40 if (D.size() == 0 || A.matrix().size() == 0) {
44 if constexpr (is_all_autodiff_v<Ta, Tb, Td>) {
48 auto AsolveB =
to_arena(A.ldlt().solve(arena_B.val()));
49 auto BTAsolveB =
to_arena(arena_B.val_op().transpose() * AsolveB);
51 var res = (arena_D.val() * BTAsolveB).
trace();
54 [arena_A, BTAsolveB, AsolveB, arena_B, arena_D, res]()
mutable {
55 double C_adj = res.adj();
57 arena_A.adj() -= C_adj * AsolveB * arena_D.val_op().transpose()
58 * AsolveB.transpose();
59 arena_B.adj() += C_adj * AsolveB
60 * (arena_D.val_op() + arena_D.val_op().transpose());
61 arena_D.adj() += C_adj * BTAsolveB;
65 }
else if constexpr (is_all_autodiff_v<Ta, Tb> && is_constant_v<Td>) {
69 auto AsolveB =
to_arena(A.ldlt().solve(arena_B.val()));
71 var res = (arena_D * arena_B.val_op().transpose() * AsolveB).
trace();
74 double C_adj = res.adj();
77 -= C_adj * AsolveB * arena_D.transpose() * AsolveB.transpose();
78 arena_B.adj() += C_adj * AsolveB * (arena_D + arena_D.transpose());
82 }
else if constexpr (is_all_autodiff_v<Ta, Td> && is_constant_v<Tb>) {
84 const auto& B_ref =
to_ref(B);
89 var res = (arena_D.val() * BTAsolveB).
trace();
92 [arena_A, BTAsolveB, AsolveB, arena_D, res]()
mutable {
93 double C_adj = res.adj();
95 arena_A.adj() -= C_adj * AsolveB * arena_D.val_op().transpose()
96 * AsolveB.transpose();
97 arena_D.adj() += C_adj * BTAsolveB;
101 }
else if constexpr (is_autodiff_v<Ta> && is_constant_all_v<Tb, Td>) {
103 const auto& B_ref =
to_ref(B);
110 double C_adj = res.adj();
112 arena_A.adj() -= C_adj * AsolveB * arena_D.val_op().transpose()
113 * AsolveB.transpose();
117 }
else if constexpr (is_constant_v<Ta> && is_all_autodiff_v<Tb, Td>) {
120 auto AsolveB =
to_arena(A.ldlt().solve(arena_B.val()));
121 auto BTAsolveB =
to_arena(arena_B.val_op().transpose() * AsolveB);
123 var res = (arena_D.val() * BTAsolveB).
trace();
126 [BTAsolveB, AsolveB, arena_B, arena_D, res]()
mutable {
127 double C_adj = res.adj();
129 arena_B.adj() += C_adj * AsolveB
130 * (arena_D.val_op() + arena_D.val_op().transpose());
131 arena_D.adj() += C_adj * BTAsolveB;
135 }
else if constexpr (is_constant_all_v<Ta, Td> && is_autodiff_v<Tb>) {
138 auto AsolveB =
to_arena(A.ldlt().solve(arena_B.val()));
140 var res = (arena_D * arena_B.val_op().transpose() * AsolveB).
trace();
143 arena_B.adj() += res.adj() * AsolveB * (arena_D + arena_D.transpose());
147 }
else if constexpr (is_constant_all_v<Ta, Tb> && is_autodiff_v<Td>) {
148 const auto& B_ref =
to_ref(B);
153 var res = (arena_D.val() * BTAsolveB).
trace();
156 arena_D.adj() += res.adj() * BTAsolveB;
180template <
typename Td,
typename Ta,
typename Tb,
189 if (D.size() == 0 || A.matrix().size() == 0) {
193 if constexpr (is_all_autodiff_v<Ta, Tb, Td>) {
197 auto AsolveB =
to_arena(A.ldlt().solve(arena_B.val()));
198 auto BTAsolveB =
to_arena(arena_B.val_op().transpose() * AsolveB);
200 var res = (arena_D.val().asDiagonal() * BTAsolveB).
trace();
203 [arena_A, BTAsolveB, AsolveB, arena_B, arena_D, res]()
mutable {
204 double C_adj = res.adj();
206 arena_A.adj() -= C_adj * AsolveB * arena_D.val_op().asDiagonal()
207 * AsolveB.transpose();
208 arena_B.adj() += C_adj * AsolveB * 2 * arena_D.val_op().asDiagonal();
209 arena_D.adj() += C_adj * BTAsolveB.diagonal();
213 }
else if constexpr (is_all_autodiff_v<Ta, Tb> && is_constant_v<Td>) {
217 auto AsolveB =
to_arena(A.ldlt().solve(arena_B.val()));
219 var res = (arena_D.asDiagonal() * arena_B.val_op().transpose() * AsolveB)
223 double C_adj = res.adj();
226 -= C_adj * AsolveB * arena_D.asDiagonal() * AsolveB.transpose();
227 arena_B.adj() += C_adj * AsolveB * 2 * arena_D.asDiagonal();
231 }
else if constexpr (is_all_autodiff_v<Ta, Td> && is_constant_v<Tb>) {
233 const auto& B_ref =
to_ref(B);
238 var res = (arena_D.val().asDiagonal() * BTAsolveB).
trace();
241 [arena_A, BTAsolveB, AsolveB, arena_D, res]()
mutable {
242 double C_adj = res.adj();
244 arena_A.adj() -= C_adj * AsolveB * arena_D.val_op().asDiagonal()
245 * AsolveB.transpose();
246 arena_D.adj() += C_adj * BTAsolveB.diagonal();
250 }
else if constexpr (is_autodiff_v<Ta> && is_constant_all_v<Tb, Td>) {
252 const auto& B_ref =
to_ref(B);
256 var res = (arena_D.asDiagonal() *
value_of(B_ref).transpose() * AsolveB)
260 double C_adj = res.adj();
262 arena_A.adj() -= C_adj * AsolveB * arena_D.val_op().asDiagonal()
263 * AsolveB.transpose();
267 }
else if constexpr (is_constant_v<Ta> && is_all_autodiff_v<Tb, Td>) {
270 auto AsolveB =
to_arena(A.ldlt().solve(arena_B.val()));
271 auto BTAsolveB =
to_arena(arena_B.val_op().transpose() * AsolveB);
273 var res = (arena_D.val().asDiagonal() * BTAsolveB).
trace();
276 [BTAsolveB, AsolveB, arena_B, arena_D, res]()
mutable {
277 double C_adj = res.adj();
279 arena_B.adj() += C_adj * AsolveB * 2 * arena_D.val_op().asDiagonal();
280 arena_D.adj() += C_adj * BTAsolveB.diagonal();
284 }
else if constexpr (is_constant_all_v<Ta, Td> && is_autodiff_v<Tb>) {
287 auto AsolveB =
to_arena(A.ldlt().solve(arena_B.val()));
289 var res = (arena_D.asDiagonal() * arena_B.val_op().transpose() * AsolveB)
293 arena_B.adj() += res.adj() * AsolveB * 2 * arena_D.asDiagonal();
297 }
else if constexpr (is_constant_all_v<Ta, Tb> && is_autodiff_v<Td>) {
298 const auto& B_ref =
to_ref(B);
303 var res = (arena_D.val().asDiagonal() * BTAsolveB).
trace();
306 arena_D.adj() += res.adj() * BTAsolveB.diagonal();
LDLT_factor is a structure that holds a matrix of type T and the LDLT of its values.
require_t< is_col_vector< std::decay_t< T > > > require_col_vector_t
Require type satisfies is_col_vector.
require_all_t< is_matrix< std::decay_t< Types > >... > require_all_matrix_t
Require all of the types satisfy is_matrix.
auto transpose(Arg &&a)
Transposes a kernel generator expression.
require_any_t< is_var< scalar_type_t< std::decay_t< Types > > >... > require_any_st_var
Require any of the scalar types satisfy is_var.
void check_square(const char *function, const char *name, const T_y &y)
Check if the specified matrix is square.
void check_multiplicable(const char *function, const char *name1, const T1 &y1, const char *name2, const T2 &y2)
Check if the matrices can be multiplied.
void reverse_pass_callback(F &&functor)
Puts a callback on the autodiff stack to be called in reverse pass.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
value_type_t< T > trace(const T &m)
Calculates trace (sum of diagonal) of given kernel generator expression.
arena_t< T > to_arena(const T &a)
Converts given argument into a type that either has any dynamic allocation on AD stack or schedules i...
return_type_t< EigMat1, T2, EigMat3 > trace_gen_inv_quad_form_ldlt(const EigMat1 &D, LDLT_factor< T2 > &A, const EigMat3 &B)
Compute the trace of an inverse quadratic form.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
typename internal::arena_type_impl< std::decay_t< T > >::type arena_t
Determines a type that can be used in place of T that does any dynamic allocations on the AD stack.
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...