Automatic Differentiation
 
Loading...
Searching...
No Matches
inv_logit.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_REV_FUN_INV_LOGIT_HPP
2#define STAN_MATH_REV_FUN_INV_LOGIT_HPP
3
7
8namespace stan {
9namespace math {
10
25template <typename T, require_stan_scalar_or_eigen_t<T>* = nullptr>
26inline auto inv_logit(const var_value<T>& a) {
27 return make_callback_var(inv_logit(a.val()), [a](auto& vi) mutable {
28 as_array_or_scalar(a).adj() += as_array_or_scalar(vi.adj())
29 * as_array_or_scalar(vi.val())
30 * (1.0 - as_array_or_scalar(vi.val()));
31 });
32}
33
34} // namespace math
35} // namespace stan
36#endif
var_value< plain_type_t< T > > make_callback_var(T &&value, F &&functor)
Creates a new var initialized with a callback_vari with a given value and reverse-pass callback funct...
fvar< T > inv_logit(const fvar< T > &x)
Returns the inverse logit function applied to the argument.
Definition inv_logit.hpp:20
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...