Automatic Differentiation
 
Loading...
Searching...
No Matches
inv.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_REV_FUN_INV_HPP
2#define STAN_MATH_REV_FUN_INV_HPP
3
7
8namespace stan {
9namespace math {
10
30template <typename T, require_stan_scalar_or_eigen_t<T>* = nullptr>
31inline auto inv(const var_value<T>& a) {
32 auto denom = to_arena(as_array_or_scalar(square(a.val())));
33 return make_callback_var(inv(a.val()), [a, denom](auto& vi) mutable {
34 as_array_or_scalar(a.adj()) -= as_array_or_scalar(vi.adj()) / denom;
35 });
36}
37
38} // namespace math
39} // namespace stan
40#endif
T as_array_or_scalar(T &&v)
Returns specified input value.
var_value< plain_type_t< T > > make_callback_var(T &&value, F &&functor)
Creates a new var initialized with a callback_vari with a given value and reverse-pass callback funct...
arena_t< T > to_arena(const T &a)
Converts given argument into a type that either has any dynamic allocation on AD stack or schedules i...
Definition to_arena.hpp:25
fvar< T > inv(const fvar< T > &x)
Definition inv.hpp:12
fvar< T > square(const fvar< T > &x)
Definition square.hpp:12
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...