1#ifndef STAN_MATH_REV_FUN_ACOSH_HPP
2#define STAN_MATH_REV_FUN_ACOSH_HPP
65 x.adj() += vi.adj() / std::sqrt(x.val() * x.val() - 1.0);
77template <
typename VarMat, require_var_matrix_t<VarMat>* =
nullptr>
78inline auto acosh(
const VarMat& x) {
80 x.val().unaryExpr([](
const auto x) { return acosh(x); }),
81 [x](
const auto& vi)
mutable {
83 += vi.adj().array() / (x.val().array().square() - 1.0).sqrt();
93inline std::complex<var>
acosh(
const std::complex<var>& z) {
std::complex< V > complex_acosh(const std::complex< V > &z)
Return the hyperbolic arc cosine of the complex argument.
fvar< T > acosh(const fvar< T > &x)
var_value< plain_type_t< T > > make_callback_var(T &&value, F &&functor)
Creates a new var initialized with a callback_vari with a given value and reverse-pass callback funct...
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...