1#ifndef STAN_MATH_REV_CONSTRAINT_UNIT_VECTOR_CONSTRAIN_HPP
2#define STAN_MATH_REV_CONSTRAINT_UNIT_VECTOR_CONSTRAIN_HPP
29template <
typename T, require_rev_col_vector_t<T>* =
nullptr>
37 const double r = arena_y_val.norm();
41 arena_y.adj() += res.adj() / r
43 * ((arena_y_val.array() * res.adj().array()).sum()
60template <
typename T, require_eigen_col_vector_vt<is_var, T>* =
nullptr>
62 const auto& y_ref =
to_ref(y);
78template <
typename T, require_var_col_vector_t<T>* =
nullptr>
void reverse_pass_callback(F &&functor)
Puts a callback on the autodiff stack to be called in reverse pass.
auto unit_vector_constrain(const EigMat &y)
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
void check_nonzero_size(const char *function, const char *name, const T_y &y)
Check if the specified matrix/vector is of non-zero size.
auto dot_self(const T &a)
Returns squared norm of a vector or matrix.
typename internal::arena_type_impl< std::decay_t< T > >::type arena_t
Determines a type that can be used in place of T that does any dynamic allocations on the AD stack.
std::conditional_t< is_any_var_matrix< ReturnType, Types... >::value, stan::math::var_value< stan::math::promote_scalar_t< double, plain_type_t< ReturnType > > >, stan::math::promote_scalar_t< stan::math::var_value< double >, plain_type_t< ReturnType > > > return_var_matrix_t
Given an Eigen type and several inputs, determine if a matrix should be var<Matrix> or Matrix<var>.
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...