Automatic Differentiation
 
Loading...
Searching...
No Matches
lognormal_cdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_PROB_LOGNORMAL_CDF_HPP
2#define STAN_MATH_PRIM_PROB_LOGNORMAL_CDF_HPP
3
20#include <cmath>
21
22namespace stan {
23namespace math {
24
25template <typename T_y, typename T_loc, typename T_scale,
27 T_y, T_loc, T_scale>* = nullptr>
29 const T_loc& mu,
30 const T_scale& sigma) {
31 using T_partials_return = partials_return_t<T_y, T_loc, T_scale>;
32 using T_y_ref = ref_type_if_not_constant_t<T_y>;
33 using T_mu_ref = ref_type_if_not_constant_t<T_loc>;
34 using T_sigma_ref = ref_type_if_not_constant_t<T_scale>;
35 static constexpr const char* function = "lognormal_cdf";
36
37 T_y_ref y_ref = y;
38 T_mu_ref mu_ref = mu;
39 T_sigma_ref sigma_ref = sigma;
40
41 decltype(auto) y_val = to_ref(as_value_column_array_or_scalar(y_ref));
42 decltype(auto) mu_val = to_ref(as_value_column_array_or_scalar(mu_ref));
43 decltype(auto) sigma_val = to_ref(as_value_column_array_or_scalar(sigma_ref));
44
45 check_nonnegative(function, "Random variable", y_val);
46 check_finite(function, "Location parameter", mu_val);
47 check_positive_finite(function, "Scale parameter", sigma_val);
48
49 if (size_zero(y, mu, sigma)) {
50 return 1.0;
51 }
52
53 auto ops_partials = make_partials_propagator(y_ref, mu_ref, sigma_ref);
54
55 if (sum(promote_scalar<int>(y_val == 0))) {
56 return ops_partials.build(0.0);
57 }
58
59 const auto& log_y = log(y_val);
60 const auto& scaled_diff = to_ref_if<is_any_autodiff_v<T_y, T_loc, T_scale>>(
61 (log_y - mu_val) / (sigma_val * SQRT_TWO));
62 const auto& erfc_m_diff = erfc(-scaled_diff);
63 const auto& cdf_n
64 = to_ref_if<is_any_autodiff_v<T_y, T_loc, T_scale>>(0.5 * erfc_m_diff);
65
66 T_partials_return cdf = prod(cdf_n);
67
68 if constexpr (is_any_autodiff_v<T_y, T_loc, T_scale>) {
69 const auto& exp_m_sq_diff = exp(-scaled_diff * scaled_diff);
70 const auto& rep_deriv = to_ref_if<
72 T_y> + is_autodiff_v<T_scale> + is_autodiff_v<T_loc> >= 2>(
73 -cdf * INV_SQRT_TWO_PI * exp_m_sq_diff / (sigma_val * cdf_n));
74 if constexpr (is_autodiff_v<T_y>) {
75 partials<0>(ops_partials) = -rep_deriv / y_val;
76 }
77 if constexpr (is_autodiff_v<T_loc>) {
78 partials<1>(ops_partials) = rep_deriv;
79 }
80 if constexpr (is_autodiff_v<T_scale>) {
81 partials<2>(ops_partials) = rep_deriv * scaled_diff * SQRT_TWO;
82 }
83 }
84 return ops_partials.build(cdf);
85}
86
87} // namespace math
88} // namespace stan
89#endif
require_all_not_t< is_nonscalar_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_not_nonscalar_prim_or_rev_kernel_expression_t
Require none of the types satisfy is_nonscalar_prim_or_rev_kernel_expression.
return_type_t< T_y_cl, T_loc_cl, T_scale_cl > lognormal_cdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma)
Returns the loghormal cumulative distribution function for the given location, and scale.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
void check_nonnegative(const char *function, const char *name, const T_y &y)
Check if y is non-negative.
bool size_zero(const T &x)
Returns 1 if input is of length 0, returns 0 otherwise.
Definition size_zero.hpp:19
value_type_t< T > prod(const T &m)
Calculates product of given kernel generator expression elements.
Definition prod.hpp:21
T to_ref_if(T &&a)
No-op that should be optimized away.
Definition to_ref.hpp:45
fvar< T > log(const fvar< T > &x)
Definition log.hpp:18
static constexpr double INV_SQRT_TWO_PI
The value of 1 over the square root of , .
static constexpr double SQRT_TWO
The value of the square root of 2, .
auto as_value_column_array_or_scalar(T &&a)
Extract the value from an object and for eigen vectors and std::vectors convert to an eigen column ar...
fvar< T > erfc(const fvar< T > &x)
Definition erfc.hpp:16
void check_finite(const char *function, const char *name, const T_y &y)
Return true if all values in y are finite.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
Definition sum.hpp:23
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
Definition to_ref.hpp:18
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
void check_positive_finite(const char *function, const char *name, const T_y &y)
Check if y is positive and finite.
fvar< T > exp(const fvar< T > &x)
Definition exp.hpp:15
typename ref_type_if< is_autodiff_v< T >, T >::type ref_type_if_not_constant_t
Definition ref_type.hpp:63
constexpr bool is_autodiff_v
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...