Automatic Differentiation
 
Loading...
Searching...
No Matches
trace_quad_form.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_FUN_TRACE_QUAD_FORM_HPP
2#define STAN_MATH_PRIM_FUN_TRACE_QUAD_FORM_HPP
3
8
9namespace stan {
10namespace math {
11
24template <typename EigMat1, typename EigMat2,
25 require_all_eigen_vt<std::is_arithmetic, EigMat1, EigMat2>* = nullptr>
27 const EigMat2& B) {
28 check_square("trace_quad_form", "A", A);
29 check_multiplicable("trace_quad_form", "A", A, "B", B);
30 const auto& B_ref = to_ref(B);
31 return B_ref.cwiseProduct(A * B_ref).sum();
32}
33
34} // namespace math
35} // namespace stan
36
37#endif
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
void check_square(const char *function, const char *name, const T_y &y)
Check if the specified matrix is square.
void check_multiplicable(const char *function, const char *name1, const T1 &y1, const char *name2, const T2 &y2)
Check if the matrices can be multiplied.
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
Definition to_ref.hpp:17
return_type_t< EigMat1, EigMat2 > trace_quad_form(const EigMat1 &A, const EigMat2 &B)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...