1#ifndef STAN_MATH_PRIM_FUN_SINH_HPP 
    2#define STAN_MATH_PRIM_FUN_SINH_HPP 
   21template <
typename T, require_arithmetic_t<T>* = 
nullptr>
 
   33template <
typename T, require_complex_bt<std::is_arithmetic, T>* = 
nullptr>
 
   34inline auto sinh(T&& x) {
 
   47  static inline auto fun(T&& x) {
 
   48    return sinh(std::forward<T>(x));
 
   59template <
typename Container, require_ad_container_t<Container>* = 
nullptr>
 
   60inline auto sinh(Container&& x) {
 
   62      std::forward<Container>(x));
 
   73template <
typename Container,
 
   75inline auto sinh(Container&& x) {
 
   76  return apply_vector_unary<Container>::apply(
 
   77      std::forward<Container>(x), [](
auto&& v) { 
return v.array().
sinh(); });
 
   90  return 0.5 * (
exp(z) - 
exp(-z));
 
require_t< container_type_check_base< is_container, base_type_t, TypeCheck, Check... > > require_container_bt
Require type satisfies is_container.
 
std::complex< V > complex_sinh(const std::complex< V > &z)
Return the hyperbolic sine of the complex argument.
 
fvar< T > sinh(const fvar< T > &x)
 
fvar< T > exp(const fvar< T > &x)
 
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
 
Base template class for vectorization of unary scalar functions defined by a template class F to a sc...
 
Structure to wrap sinh() so that it can be vectorized.