1#ifndef STAN_MATH_PRIM_FUN_QUAD_FORM_HPP
2#define STAN_MATH_PRIM_FUN_QUAD_FORM_HPP
26template <
typename EigMat1,
typename EigMat2,
27 require_all_eigen_t<EigMat1, EigMat2>* =
nullptr,
28 require_not_eigen_col_vector_t<EigMat2>* =
nullptr,
29 require_vt_same<EigMat1, EigMat2>* =
nullptr,
30 require_all_vt_arithmetic<EigMat1, EigMat2>* =
nullptr>
31inline auto quad_form(
const EigMat1& A,
const EigMat2& B) {
35 [](
const auto& b,
const auto& a) {
return b.transpose() * a * b; },
51template <
typename EigMat,
typename ColVec, require_eigen_t<EigMat>* =
nullptr,
52 require_eigen_col_vector_t<ColVec>* =
nullptr,
53 require_vt_same<EigMat, ColVec>* =
nullptr,
54 require_all_vt_arithmetic<EigMat, ColVec>* =
nullptr>
58 const auto& B_ref =
to_ref(B);
59 return B_ref.dot(A * B_ref);
typename value_type< T >::type value_type_t
Helper function for accessing underlying type.
void check_square(const char *function, const char *name, const T_y &y)
Check if the specified matrix is square.
auto make_holder(const F &func, Args &&... args)
Constructs an expression from given arguments using given functor.
void check_multiplicable(const char *function, const char *name1, const T1 &y1, const char *name2, const T2 &y2)
Check if the matrices can be multiplied.
promote_scalar_t< return_type_t< EigMat1, EigMat2 >, EigMat2 > quad_form(const EigMat1 &A, const EigMat2 &B)
Return the quadratic form .
ref_type_t< T && > to_ref(T &&a)
This evaluates expensive Eigen expressions.
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...