1#ifndef STAN_MATH_PRIM_FUN_OWENS_T_HPP
2#define STAN_MATH_PRIM_FUN_OWENS_T_HPP
6#include <boost/math/special_functions/owens_t.hpp>
58inline double owens_t(
double h,
double a) {
60 return std::numeric_limits<double>::quiet_NaN();
62 return boost::math::owens_t(h, a);
75template <
typename T1,
typename T2, require_any_container_t<T1, T2>* =
nullptr,
76 require_all_not_var_and_matrix_types<T1, T2>* =
nullptr>
79 [](
auto&& c,
auto&& d) {
80 return owens_t(std::forward<
decltype(c)>(c),
81 std::forward<
decltype(d)>(d));
83 std::forward<T1>(a), std::forward<T2>(b));
auto apply_scalar_binary(F &&f, T1 &&x, T2 &&y)
Base template function for vectorization of binary scalar functions defined by applying a functor to ...
fvar< T > owens_t(const fvar< T > &x1, const fvar< T > &x2)
Return Owen's T function applied to the specified arguments.
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.