Automatic Differentiation
 
Loading...
Searching...
No Matches
modified_bessel_second_kind.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_FUN_MODIFIED_BESSEL_SECOND_KIND_HPP
2#define STAN_MATH_PRIM_FUN_MODIFIED_BESSEL_SECOND_KIND_HPP
3
6#include <boost/math/special_functions/bessel.hpp>
7
8namespace stan {
9namespace math {
10
42template <typename T2, require_arithmetic_t<T2>* = nullptr>
43inline T2 modified_bessel_second_kind(int v, const T2 z) {
44 return boost::math::cyl_bessel_k(v, z);
45}
46
57template <typename T1, typename T2, require_any_container_t<T1, T2>* = nullptr>
58inline auto modified_bessel_second_kind(T1&& a, T2&& b) {
60 [](auto&& c, auto&& d) {
61 return modified_bessel_second_kind(std::forward<decltype(c)>(c),
62 std::forward<decltype(d)>(d));
63 },
64 std::forward<T1>(a), std::forward<T2>(b));
65}
66
67} // namespace math
68} // namespace stan
69
70#endif
auto apply_scalar_binary(F &&f, T1 &&x, T2 &&y)
Base template function for vectorization of binary scalar functions defined by applying a functor to ...
fvar< T > modified_bessel_second_kind(int v, const fvar< T > &z)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...